33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of genotoxic and mitotoxic effects of TAF-loaded chitosan nanoparticles in HepG2 cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 30 Sep 2023, Accepted 24 Apr 2024, Published online: 10 May 2024
 

Abstract

Tenofovir alafenamide (TAF) is a new drug from the nucleotide reverse transcriptase inhibitor group approved for the treatment of chronic Hepatitis B in 2016. With this study, we aimed to test whether possible cellular toxicity can be reduced by controlled drug release as a result of loading with chitosan nanoparticles (CHS). We investigated the genotoxic and mitotoxic effects of 45 µM TAF-loaded CHS and TAF-only on HepG2 cells by micronucleus (MN), comet assay, determination of mtDNA quantification, mitochondrial membrane potential (ΔΨm), and ROS levels. Additionally, we compared the samples by RNAseq analyses to reveal the transcriptional responses to each regimen. In terms of genotoxic tests, although MN and comet were found higher in all experimental treatment conditions, the encapsulation of CHS reduced the genotoxicity of TAF. MtDNA level was found to be lower in the TAF treatment, whereas it was higher in CHS and CHS-TAF treatments. The TAF-loaded CHS and TAF treatments had an impaired ΔΨm value. Cellular ROS levels were higher in all treatment conditions. According to the analyses of gene expression patterns; CHS-only changed the expression of relatively few genes (187 genes), while TAF changed the expression of the 1974 genes and TAF-loaded CHS changed the expression of 734 genes. Considering the gene expression numbers, CHS encapsulation of TAF significantly reduced the number of genes that were differentially expressed by TAF-only. Overall, we observed that TAF has genotoxic and mitotoxic effects on HepG2 cells, and upon encapsulation with CHS, its genotoxic and mitotoxic effects were decreased.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials. The generated RNA-seq datasets were uploaded into the NCBI SRA database under the Bioproject ID: PRJNA878631.

Additional information

Funding

This study was funded by the Inonu University Research Fund in Turkey (TCD/2018-1356).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.