292
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biceps femoris muscle-tendon strain during an entire overground sprint acceleration: a biomechanical explanation for hamstring injuries in the acceleration phase

ORCID Icon, , , ORCID Icon & ORCID Icon
Received 15 Nov 2023, Accepted 02 May 2024, Published online: 13 May 2024
 

ABSTRACT

The objectives of this study were to analyse the peak muscle-tendon (MT) strain of the hamstring during an entire acceleration sprint overground and examine their relationship with relative joint angles and segment orientation in the sagittal plane, which are the direct causes of MT strain. Kinematic data were recorded using a 3D inertial motion capture system in 21 male semi-professional soccer players during 40-metre overground sprint. Scaled musculoskeletal models were used to estimate peak MT strain in the hamstring over 16 steps. Biceps femoris long head (BFLH) exhibited the largest peaks in MT strain compared to semitendinosus (ST) and semimembranosus (SM) muscles across all the steps, with its overall strain decreased as the number of steps and maximum speed increased. Hip flexion angle was found to be a strong predictor (p < 0.001) of joint angles, being the orientation of the pelvis in the sagittal plane of the segment with the greatest influence (p < 0.001) on the peak MT strain of BFLH during sprinting. The current study provides a biomechanical explanation for the high proportion of hamstring injuries in the acceleration phase of sprinting.

Acknowledgments

The authors would like to extend their sincere gratitude to the volunteer players for their dedication and cooperation in participating in this study. Additionally, the authors would like to express their appreciation for the valuable assistance provided by Adrian Moro, Carlos Santo Domingo and Pedro Moreno-Cabañas during the data collection process. Their contributions were instrumental in the successful completion of this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 212.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.