41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of tetrahydrobenzo[a]xanthene-11-ones by indium sulfide nanoparticles as green an efficient and reusable catalyst under solvent-free condition

, , & ORCID Icon
Received 04 Mar 2024, Accepted 28 Apr 2024, Published online: 10 May 2024
 

Abstract

In this work, tetrahydrobenzo[a]xanthene-11-ones are effectively synthesized without the need for solvents and in an environmentally safe manner by the use of indium sulfide (In2S3) nanoparticle as a catalyst. Indium sulfide (In2S3) nanoparticles were synthesized by the hydrothermal method, and X-ray diffraction pattern (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and transition electron microscopy (TEM) were among the techniques used to characterize indium sulfide (In2S3) nanoparticles. The synthesis of tetrahydrobenzo[a]xanthene-11-ones was achieved in a single pot using a three-component reaction involving β-naphthol, dimedone, and aryl aldehyde. The resultant indium sulfide (In2S3) nanoparticles were produced without the need for a solvent and exhibited remarkable yields, as well as quick reaction times and reusable catalysts.

GRAPHICAL ABSTRACT

Acknowledgements

The authors are grateful to the Management and Principal of P.V.P. College Pravaranagar for providing the necessary facilities. We also thank SAIF, Punjab University, Chandigarh for spectral analysis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.