Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
181
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of porous ceramsite from municipal sludge and its structure characteristics

, , , , , , & show all
Pages 322-335 | Received 17 May 2023, Accepted 26 Sep 2023, Published online: 11 Oct 2023
 

ABSTRACT

In this paper, the municipal sludge was used as the main raw material to prepare a kind of porous ceramsite. The porous ceramsite composition of 50 wt-% of municipal sludge, 10 wt-% of municipal solid waste incineration bottom ash, 45 wt-% of waste glass powders, sintering temperature of 900°C and holding duration of 30 min. The best of the ceramsite synthesised had 1-h water absorption capacity of 51.53%, apparent porosity of 64.14% and pore volume 0.671 mL g−1. During the sintering process, the waste glass powders generated a large amount of liquid phase, wrapt the gas produced by organic matter, and formed a porous structure inside the ceramic particles. At the same time, the silica and aluminium were combined to form Kyanite, which constitutes the basic skeleton of the ceramic particles showing a certain strength. Besides, silicon oxide and calcium silicate generated Wollastonite improving the corrosion resistance of ceramic particles as well. The adsorption capacity of the prepared porous ceramsite modified by acid combined with sodium citrate was 3.1 mg g−1 using the prepared porous ceramsite as substrate. The adsorption kinetics of ammonia nitrogen by porous ceramics conforms to the quasi-second-order kinetic model, and the adsorption isotherm model conforms to the Langmuir model. The findings lay a theoretical foundation for the integration of resource utilisation of solid waste and later application.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was funded by the National Key Research and Development Program of China [grant number 2019YFC1904605].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.