47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A dynamic driving-style analysis method based on drivers’ interaction with surrounding vehicles

, , , , &
Published online: 09 Apr 2024
 

Abstract

The ability to recognize different driving styles of surrounding vehicles is crucial to determine the safest and most efficient driving decisions, prevent accidents, and analyze the causes of traffic accidents. Understanding if the surrounding vehicle is aggressive or cautious can greatly assist in the decision making of vehicles in terms of whether and when it is appropriate to make particular maneuvers. A driver’s driving style usually changes with the environment, which brings great challenges to the current research. To this end, a dynamic driving-style analysis framework, in which drivers’ interactions with other vehicles are considered, is proposed in this article. First, by analyzing common traffic scenarios, five surrounding vehicles are selected as the environmental vehicles to be considered. Time headway (THW) and time to collision (TTC) that can consider the relative speed and position with the ego vehicle are selected as the clustering indicators. Then, a Bayesian nonparametric learning method based on a hierarchical Dirichlet-process hidden semi-Markov model (HDP-HSMM) is introduced to extract primitive driving patterns from time-series driving data without prior knowledge of the number of these patterns. Then the driving pattern is scored according to the risk degree. A driver’s aggressiveness is scored and drivers are divided into different styles based on the frequency distribution of driving patterns. The effectiveness of the proposed method is demonstrated on a real-world vehicle trajectory data set where results show that driving pattern switches and more complex driving behaviors can be better captured and understood semantically.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 128.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.