161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional flow structure in a confluence-bifurcation unit

, , &
Article: 2349076 | Received 17 Jan 2024, Accepted 24 Apr 2024, Published online: 04 May 2024

Abstract

Enhanced understanding of flow structure in braided rivers is essential for river regulation, flood control, and infrastructure safety across the river. It has been revealed that the basic morphological element of braided rivers is confluence-bifurcation units. However, flow structure in these units has so far remained poorly understood with previous studies having focused mainly on single confluences/bifurcations. Here, the flow structure in a laboratory-scale confluence-bifurcation unit is numerically investigated based on the FLOW-3D® software platform. Two discharges are considered, with the central bars submerged or exposed respectively when the discharge is high or low. The results show that flow convergence and divergence in the confluence-bifurcation unit are relatively weak when the central bars are submerged. Based on comparisons with a single confluence/bifurcation, it is found that the effects of the upstream central bar on the flow structure in the confluence-bifurcation unit reign over those of the downstream central bar. Concurrently, the high-velocity zone in the confluence-bifurcation unit is less concentrated than that in a single confluence while being more concentrated than that observed in a single bifurcation. The present work unravels the flow structure in a confluence-bifurcation unit and provides a unique basis for further investigating morphodynamics in braided rivers.

Highlights

  • 3D flow structure in a confluence-bifurcation unit (CBU) is numerically investigated.

  • Flow convergence/divergence in CBU is relatively weak when central bars are submerged.

  • Effects of the upstream central bar on CBU flow reign over those of the downstream central bar.

  • The high-velocity zone is less/more concentrated in the CBU than in a single confluence/bifurcation when the central bars are exposed.

1 Introduction

Confluences and bifurcations commonly exist in alluvial rivers and usually are important nodes of riverbed planform (Szupiany et al., Citation2012; Hackney et al., Citation2018). Flow convergence and divergence in these junctions result in highly three-dimensional (3D) flow characteristics, which greatly influence sediment transport, and hence riverbed evolution and channel formation (Le et al., Citation2019; Xie et al., Citation2020). Braided rivers, characterized by unstable networks of channels separated by central bars (Ashmore, Citation2013), have confluence-bifurcation units as their basic morphological elements (Ashmore, Citation1982; Citation1991; Citation2013; Federici & Paola, Citation2003; Jang & Shimizu, Citation2005). In particular, confluence-bifurcation units exhibit a distinct morphology from single confluences/bifurcations and bifurcation-confluence regions because two adjacent central bars are included. Within a confluence-bifurcation unit, two tributaries converge at the upstream bar tail and soon diverge to two anabranches again at the downstream bar head. Therefore, the flow structure in the unit may be significantly influenced by both the two central bars, and thus considerably different from that in single confluences, single bifurcations, and bifurcation-confluence regions, where the flow is affected by only one central bar. Enhanced understanding of flow structure in confluence-bifurcation units is urgently needed, which is essential for water resources management, river regulation, flood control, protection of river ecosystems and the safety of infrastructures across the rivers such as bridges, oil pipelines and communication cables (Redolfi et al., Citation2019; Ragno et al., Citation2021).

The flow dynamics, turbulent coherent structures, and turbulent characteristics in single confluences have been widely studied since the 1980s (Yuan et al., Citation2022). Flow dynamics at river channel confluences have been systematically and completely analyzed, which can be characterized by six major regions of flow stagnation, flow deflection, flow separation, maximum velocity, flow recovery and distinct shear layers (Best, Citation1987). For example, the field observation of Roy et al. (Citation1988) and Roy and Bergeron (Citation1990) highlighted the flow separation zones and recirculation at downstream natural confluence corners. Ashmore et al. (Citation1992) measured the flow field in a natural confluence and found flow accelerates suddenly at the confluence junction with two separated high-velocity cores merging into one single core at the channel centre. De Serres et al. (Citation1999) investigated the three-dimensional flow structure at a river confluence and identified the existence of the mixing layer, stagnation zones, separation zones and recovery zones. Sharifipour et al. (Citation2015) numerically studied the flow structure in a 90° single confluence and found that the size of the separation zone decreases with the width ratio between the tributary and the main channel. Recently, three main classes of large-scale turbulent coherent structures (Duguay et al., Citation2022) have been presented, i.e. vertical-orientated vortices or Kelvin-Helmholtz instabilities (Rhoads & Sukhodolov, Citation2001; Constantinescu et al., Citation2011; Citation2016; Biron et al., Citation2019), channel-scale ‘back-to-back’ helical cells, (Mosley, Citation1976; Ashmore, Citation1982; Ashmore et al., Citation1992; Ashworth, Citation1996; Best, Citation1987; Rhoads & Kenworthy, Citation1995; Bradbrook et al., Citation1998; Lane et al., Citation2000), and smaller, strongly coherent streamwise-orientated vortices (Constantinescu et al., Citation2011; Sukhodolov & Sukhodolova, Citation2019; Duguay et al., Citation2022). However, no consensus on a universal turbulent coherent structure mode has been reached so far (Duguay et al., Citation2022). In addition, some studies (Ashworth, Citation1996; Constantinescu et al., Citation2011; Sukhodolov et al., Citation2017; Le et al., Citation2019; Yuan et al., Citation2023) have focused on turbulent characteristics, e.g. turbulent kinetic energy, turbulent dissipation rate and Reynolds stress, which can be critical parameters to further explaining the diversity of these turbulent coherent structure modes.

Investigations on the flow structure in single bifurcations have mainly focused on hydrodynamics in anabranches (Hua et al., Citation2009; van der Mark & Mosselman, Citation2013; Iwantoro et al., Citation2022) and around bifurcation bars (McLelland et al., Citation1999; Bertoldi & Tubino, Citation2005; Citation2007; Marra et al., Citation2014), whereas few studies have considered the effects of bifurcations on the upstream flow structure. Thomas et al. (Citation2011) found that the velocity core upstream of the bifurcation is located near the water surface and towards the channel center in experimental investigations of a Y-shaped bifurcation. Miori et al. (Citation2012) simulated flow in a Y-shaped bifurcation and found two circulation cells upstream of the bifurcation with flow converging at the water surface and diverging near the bed. Szupiany et al. (Citation2012) reported velocity decreasing and back-to-back circulation cells upstream of the bifurcation junction in the field observation of a bifurcation of the Rio Parana River. These investigations provide insight into how bifurcations affect the flow patterns upstream, yet there is a need for further research on the dynamics of flow occurring immediately before the bifurcation junction.

Generally, the findings of studies on bifurcation-confluence regions are similar to those concerning single confluences and bifurcations. Hackney et al. (Citation2018) measured the hydrodynamic characteristics in a bifurcation-confluence of the Mekong River and found the velocity cores located at the channel centre and strong secondary current occurring under low discharges. Le et al. (Citation2019) reported a high-turbulent-kinetic-energy (high-TKE) zone located near the bed in their numerical simulation of flow in a natural bifurcation-confluence region. Moreover, a stagnation zone was found upstream of the confluence and back-to-back secondary current cells were detected at the confluence according to Xie et al. (Citation2020) and Xu et al. (Citation2022). Overall, these studies have further unraveled the flow patterns in river confluences and bifurcations.

Unfortunately, limited attention has been paid to the flow structure in confluence-bifurcation units. Parsons et al. (Citation2007) investigated a large confluence-bifurcation unit in Rio Parana, Argentina, and no classical back-to-back secondary current cells were observed under a discharge of 12000 m3·s−1. To date, the differences in flow structure between confluence-bifurcation units and single confluences/bifurcations have remained far from clear. In addition, although the effects of discharge on flow structure have been investigated in several studies on single confluences/bifurcations, (Hua et al., Citation2009; Le et al., Citation2019; Luz et al., Citation2020; Xie et al., Citation2020; Xu et al., Citation2022), cases with fully submerged central bars were not considered, which is typical in braided rivers during floods. In-depth studies concerning these issues are urgently needed to gain better insight into the flow structure in confluence-bifurcation units of braided rivers.

This paper aims to (1) reveal the 3D flow structure in a confluence-bifurcation unit under different discharges and (2) elucidate the differences in the flow structure between confluence-bifurcation units and single confluence/bifurcation cases. Using the commercial computational fluid dynamics software FLOW-3D® (Version 11.2; https://www.flow3d.com; Flow Science, Inc.), fixed-bed simulations of a laboratory-scale confluence-bifurcation unit are conducted, and cases of a single confluence/bifurcation are also included for comparison. Two discharges are considered, with the central bars fully submerged or exposed respectively when the discharge is high or low. Based on the computational results, the 3D flow structure in the confluence-bifurcation unit conditions is analyzed from various aspects including free surface elevation, time-averaged flow velocity distribution, recirculation vortex structure, secondary current, and turbulent kinetic energy and dissipation rate. In particular, the flow structure in the confluence-bifurcation unit is compared with that in the single confluence/bifurcation cases to unravel the differences.

2. Conceptual flume and computational cases

2.1. Conceptual flume

In this paper, a laboratory-scale conceptual flume is designed and used in numerical simulations. Figure (a–d) shows the morphological characteristics of the flume. To ensure that the conceptual flume reflects morphology features of natural braided channels, key parameters governing the flume morphology, e.g. unit length, width, and channel width-depth ratio, are determined according to studies on morphological characteristics of natural confluence-bifurcation units (Hundey & Ashmore, Citation2009; Ashworth, Citation1996; Orfeo et al., Citation2006; Parsons et al., Citation2007; Sambrook Smith et al., Citation2005; Kelly, Citation2006; Ashmore, Citation2013; Egozi & Ashmore, Citation2009; Redolfi et al., Citation2016; Ettema & Armstrong, Citation2019).

Figure 1. The sketch of the conceptual flume: (a) the original flume, (b) the central bar: (c) the sketch of cross-section C-C, (d) the sketch of cross-section D-D, (e) the modified part for the single confluence, (f) the modified part for the single bifurcation, (g) the position of different cross-sections. The red dashed boxes denote the regions of primary concern.

Figure 1. The sketch of the conceptual flume: (a) the original flume, (b) the central bar: (c) the sketch of cross-section C-C, (d) the sketch of cross-section D-D, (e) the modified part for the single confluence, (f) the modified part for the single bifurcation, (g) the position of different cross-sections. The red dashed boxes denote the regions of primary concern.

2.1.1. Length and width scales of the confluence-bifurcation unit

The length and width scales of the flume are first determined. The inner relation among the length LCB and average width B of a confluence-bifurcation unit and the average width Bi of a single branch was statistically studied by Hundey and Ashmore (Citation2009), which indicates the following relations: (1) LCB=(45)B(1) (2) B=1.41Bi(2) In addition, Ashworth (Citation1996) gave B = 2Bi in his experimental research on mid-bar formation downstream of a confluence, while the confluence-bifurcation unit of Rio Parana, Argentina has a relation of B≈1.71Bi (Orfeo et al., Citation2006; Parsons et al., Citation2007). Accordingly, the following relations are used in the present paper: (3) LCB=4B(3) (4) B=1.88Bi(4) where LCB = 6 m, B = 1.5 m and Bi = 0.8 m.

2.1.2. Central bar morphology

The idealized plane pattern of central bars in braided rivers is a slightly fusiform leaf shape with a short upstream side and a long downstream side (Ashworth, Citation1996; Sambrook Smith et al., Citation2005; Kelly, Citation2006; Ashmore, Citation2013). To simplify the design, the bar is approximated as a combination of two different semi-ellipses (Figure (b)). The major axis Lb is two to ten times longer than the minor axis Bb according to the statistical data in Kelly’s study, and the regression equation is given as (Kelly, Citation2006): (5) Lb=4.62Bb0.96(5) In this study, the bar width Bb is set as 0.8 m, whilst the lengths of downstream (LT1) and upstream sides (LT2) are 2 and 1.5 m, respectively (Figure (b)). Thus, the relation of Lb and Bb is given as: (6) Lb=(LT1+LT2)=4.375Bb(6) The lengths of the inlet and outlet parts are determined as Lin = Lout = 8 m, which ensures negligible effects of boundary conditions without exceptional computational cost.

2.1.3. Width-depth ratio

Channel flow capacity can be significantly affected by cross-section shapes. For natural rivers, cross-section shapes can be generalized into three sorts based on the following width-depth curve (Redolfi et al., Citation2016): (7) B=ψHφ(7) Braided rivers usually have ψ = 5∼50 and φ>1, which indicates a rather wide and shallow cross-section. The central bar form should also be taken into account, so a parabolic cross-section shape is used here with ψ = 8 and φ>1 (Figure (c,d)).

2.1.4. Bed slope

In addition, natural braided rivers are usually located in mountainous areas and thus have a relatively large bed slope. According to flume experiments and field observations, the bed slope Sb is mostly in the range of 0.01∼0.02, and a few are below 0.01 (Ashworth, Citation1996; Egozi & Ashmore, Citation2009; Ashmore, Citation2013; Redolfi et al., Citation2016; Ettema & Armstrong, Citation2019). In this study, Sb takes 0.005.

2.1.5. Complete sketch of the conceptual flume

In summary, the flume is 29 m long, 2.4 m wide, and 0.6 m high. The plane coordinates (x-direction and y-direction) used in the calculation process are shown in Figure (a). Note that the inlet corresponds to x = 0 m, and the centreline of the flume is located at y = 1.3 m. Besides, the thalweg elevation of the outlet is set as z = 0 m.

2.2. Computational cases

As stated before, the first aim of this paper is to reveal the flow structure in the confluence-bifurcation unit under different discharges. Therefore, two basic cases are set first: (1) case 1a under a low discharge (0.05 m3·s−1) with exposed central bars and (2) case 2a under a high discharge (0.30 m3·s−1) with fully submerged central bars. A total of 22 cross-sections are identified to examine the results (Figure (g)).

Further, cases of a single confluence/bifurcation are generated by splitting the original confluence-bifurcation unit into two parts. Part 1 only includes the upstream central bar and focuses on the flow convergence downstream of CS04 (Figure (e)), while Part 2 only includes the downstream central bar and focuses on the flow divergence upstream of CS19 (Figure (f)). Notably, the numbers of corresponding cross-sections in the original flume are reserved to facilitate comparison. The outlet section of the single confluence as well as the inlet section of the single bifurcation is extended to make the total length equivalent to the original flume (29 m). Also, two discharge conditions (0.05 and 0.30 m3·s−1), which correspond to exposed and fully submerged central bars, are considered for the single confluence/bifurcation. In total, six computational cases are conducted, as listed in Table . As the conceptual flume is designed to be symmetrical about the centreline, the momentum flux ratio (Mr) of the two branches should be 1 in all six cases. This is confirmed by further examining the computational results.

Table 1. Computational cases with inlet and outlet boundary conditions.

3. Numerical method

In this section, the 3D Large Eddy Simulation (LES) model integrated in the FLOW-3D® (Version 11.2; https://www.flow3d.com; Flow Science, Inc.) software platform is introduced, including governing equations and boundary conditions. Information on computational meshes with mesh independence test can be found in the Supplementary material.

3.1. Governing equations

The LES model was applied in the present paper to simulate flow in the laboratory-scale confluence-bifurcation unit. The LES model has been proven to be effective in simulating turbulent flow in river confluences and bifurcations (Constantinescu et al., Citation2011; Le et al., Citation2019). The basic idea of the LES model is that one should directly compute all turbulent flow structures that can be resolved by the computational meshes and only approximate those features that are too small to be resolved (Smagorinsky, Citation1963). Therefore, a filtering operation is applied to the original Navier-Stokes (NS) equations for incompressible fluids to distinguish the large-scale eddies and small-scale eddies (Liu et al., Citation2018). The filtered NS equations are then generated, which can be expressed in the form of a Cartesian tensor as (Liu, Citation2012): (8) u¯ixi=0,i=1,2,3(8) (9) u¯it+u¯iu¯jxj=1ρρ¯xi+xi(νu¯ixi)τijxi+G¯i,i,j=1,2,3(9) (10) τij=uiuj¯ui¯uj¯(10) where u¯i is the resolved velocity component in the i – direction (i goes from 1 to 3, denoting the x-, y – and z-directions, respectively); t is the flow time; ρ is the density of the fluid; p¯ is the pressure; ν is the kinematic viscosity; τij is the sub-grid scale (SGS) stress; G¯i is the body acceleration. In FLOW-3D®, the full NS equations are discretized and solved using the finite-volume/finite-difference method (Bombardelli et al., Citation2011; Lu et al., Citation2023).

Due to the filtering process, the velocity can be divided into a resolved part (u¯(x,t)) and an approximate part (u(x,t)) which is also known as the SGS part (Liu, Citation2012). To achieve model closure, the standard Smagorinsky SGS stress model is introduced here (Smagorinsky, Citation1963): (11) τij13τkkδij=2νSGSS¯ij(11) where νSGS is the SGS turbulent viscosity, and S¯ij is the resolved rate-of-strain tensor for the resolved scale defined by (Smagorinsky, Citation1963): (12) S¯ij=12(u¯ixj+u¯jxi)(12) In the standard Smagorinsky SGS stress model, the eddy viscosity is modelled by (Smagorinsky, Citation1963): (13) νSGS=(CsΔ¯)2|S¯|,|S¯|=2S¯ijS¯ij(13) (14) Δ¯=(ΔxΔyΔz)1/3(14) where Cs is the Smagorinsky constant, Δx, Δy, and Δz are mesh scales. In FLOW-3D®, Cs is between 0.1 to 0.2 (Smagorinsky, Citation1963).

One of the key problems in simulating 3D open channel flow is the calculation of free surface. FLOW-3D® uses the Volume of Fluid (VOF) method (Hirt & Nichols, Citation1981) to track the change of free surface. The VOF method introduces a fluid phase fraction function f to characterize the proportion of a certain fluid in each mesh cell. In that case, the surface position can be precisely located if the mesh cell is fine enough. To monitor the change of f with time and space, the following convection equation is added: (15) ft+(fu¯i)xi=0(15) For open channel flow, only two kinds of fluids are involved: water and air. If f is the fraction of water, the state of the fluid in each mesh cell can be defined as: (16) f={1,water0<f<1,interface0,air(16) In FLOW-3D®, the interface between water and air is assumed to be shear-free, which means that the drag force on the water from the air is negligible. Moreover, in most cases, the details of the gas motion are not crucial for the heavier water motion so the computational processes will be more efficient.

3.2. Boundary conditions

Six boundary conditions need to be preset in the 3D numerical simulation process. Discharge boundary conditions are used for the inlet of the flume, where the free surface elevation is automatically calculated based on the free surface elevation boundary conditions set for the outlet. The specific information on the inlet and outlet boundary conditions for all computational cases is shown in Table . Moreover, because the free surface moves temporally, the free surface boundary conditions are just set as no shear stress and having a normal pressure, and the position of the free surface will be automatically adjusted over time by the VOF method in FLOW-3D®. Furthermore, the bed and two side walls are all set to be no-slip for fixed bed conditions, and a standard wall function is employed at the wall boundaries for wall treatment.

The inlet turbulent boundary conditions also need to be considered. They are set by default here. The turbulent velocity fluctuations V are assumed to be 10% of the mean flow velocity with the turbulent kinetic energy (TKE) (per unit mass) equaling 0.5V’2. The maximum turbulent mixing length is assumed to be 7% of the minimum computational domain scale, and the turbulent dissipation rate is evaluated automatically from the TKE.

4. Results and discussion

4.1. Flow structure in the confluence-bifurcation unit

4.1.1. Free surface elevation

Figure  shows the free surface elevation at five different longitudinal profiles (i.e. α = 0.2, 0.4, 0.5, 0.6, 0.8) for cases 1a and 2a. The parameter α was defined as follows: (17) α=sB(17) where s is the transverse distance between a certain profile and the left boundary of the flume. In general, the longitudinal change of free surface in the two cases is very similar despite different discharge levels. The free surface elevation decreases as the channel narrows from the upstream bifurcation to the front of the confluence-bifurcation unit. On the contrary, when the flow diverges again at the end of the confluence-bifurcation unit, the free surface elevation increases with channel widening. However, whether the fall or rise of free surface elevation in case 1a is much sharper than that in case 2a, especially at profiles with α = 0.2 and 0.8 (Figure (a)), which indicates there may be distinct flow states between the two cases. To further illustrate this finding, the Froude number Fr at different cross-sections (CS08∼CS15) is examined. In case 2a, the flow remains subcritical within the confluence-bifurcation unit. By contrast, in case 1a, a local supercritical flow is observed near the side banks of CS09 (i.e. α = 0.2 and 0.8), with Fr being about 1.2. This local supercritical flow can lead to a hydraulic drop followed by a hydraulic jump, which accounts for the sharp change of the free surface. The foregoing reveals that when central bars are exposed under relatively low discharge, supercritical flow is more likely to occur near the side banks of the confluence junction due to flow convergence.

Figure 2. Five time-averaged free surface elevation profiles in the confluence-bifurcation unit, in which α denotes the lateral position of the certain profile. Note that the black dashed line denotes the position of CS09, where Fr is about 1.2 near the side banks (α = 0.2 and 0.8) in case 1a. Z’ = z/h2, X’ = x/B, h2 is the maximum flow depth at the outlet boundary of cases 2a, 2b and 2c, h2 = 0.34 m.

Figure 2. Five time-averaged free surface elevation profiles in the confluence-bifurcation unit, in which α denotes the lateral position of the certain profile. Note that the black dashed line denotes the position of CS09, where Fr is about 1.2 near the side banks (α = 0.2 and 0.8) in case 1a. Z’ = z/h2, X’ = x/B, h2 is the maximum flow depth at the outlet boundary of cases 2a, 2b and 2c, h2 = 0.34 m.

Moreover, in both cases 1a and 2a, the free surface is higher at the channel centre than near the side banks, whether at the front or the end of the confluence-bifurcation unit. Thus, lateral free surface slopes from the centre to the side banks are generated. For example, the lateral free surface slopes at CS09 are 0.022 and 0.016 respectively for cases 1a and 2a. These lateral slopes can lead to lateral pressure gradient force whose direction is from the channel centreline to the side banks. Notably, the lateral surface slope in case 1a is steeper than that in case 2a, which may also result from the effect of the supercritical flow.

4.1.2. Time-averaged streamwise flow velocity

In this subsection, the distribution of time-averaged streamwise flow velocity is presented from two perspectives to comprehensively analyze the velocity field within the confluence-bifurcation unit.

Figure  shows streamwise velocity distribution in three slices over z-direction and Figure  shows streamwise velocity distribution at eight different cross-sections. In both cases 1a and 2a, two upstream tributaries first deflect and converge at the confluence junction, leading to flow accelerating to a maximum velocity with a high-velocity core located at the centre of the channel (Ashmore et al., Citation1992) [Figures  and (a), CS08∼CS10]. A significant mixing layer is observed at the confluence junction nearby downstream, which is in line with the results of some previous studies (Wang et al., Citation2007; Constantinescu et al., Citation2011; Sukhodolov & Sukhodolova, Citation2019; Yuan et al., Citation2023). The flow acceleration continues until CS14, which denotes the entrance of the bifurcation junction. A sudden flow deceleration then occurs [Figure , CS14∼CS15] with two zones of extremely low velocities appearing at the bifurcation corner as flow comes near the bifurcation junction (Szupiany et al., Citation2012). This localized increase in flow velocity near the bar head may promote erosion and lead to adjustments in bar morphology (Ashworth, Citation1996).

Figure 3. Time-averaged flow velocity distribution at three different slices over z-direction in the confluence-bifurcation unit: (a)∼(c) case 1a, (d)∼(f) case 2a. The flow direction is from the left to the right. StZ = Stagnation Zones, MiL = Mixing Layer. X’ = x/B, Y’ = y/B, Ui’ = Ui/Uti, Ui denotes the time-averaged streamwise flow velocity in case series i (i = 1,2), Uti denotes the cross-section-averaged streamwise flow velocity in case series i, Ut1 = 0.385 m/s, for case 2a Ut2 = 0.714 m/s.

Figure 3. Time-averaged flow velocity distribution at three different slices over z-direction in the confluence-bifurcation unit: (a)∼(c) case 1a, (d)∼(f) case 2a. The flow direction is from the left to the right. StZ = Stagnation Zones, MiL = Mixing Layer. X’ = x/B, Y’ = y/B, Ui’ = Ui/Uti, Ui denotes the time-averaged streamwise flow velocity in case series i (i = 1,2), Uti denotes the cross-section-averaged streamwise flow velocity in case series i, Ut1 = 0.385 m/s, for case 2a Ut2 = 0.714 m/s.

Figure 4. Time-averaged flow velocity contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a.

Figure 4. Time-averaged flow velocity contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a.

Besides the shared features described above, some differences between the two cases are also identified. First, flow stagnation zones at the upstream bar tail are found exclusively in case 1a as the central bars are exposed (Figure (a–c)). Second, in case 1a the mixing layer is obvious in both the lower or upper flows (Figure (a–c)), while in case 2a the mixing layer can be inconspicuous in the upper flow (Figure (f)). Third, in case 1a, two high-velocity cores gradually transform into one single core downstream of the confluence [Figure (a), CS08∼CS11] and are divided into two cores again at the downstream bar head [Figure (a), CS15]. By contrast, in case 2a, the two cores merge much more rapidly [Figure (a), CS08∼CS09], and no obvious reseparation of the merged core is found at the downstream bar head (Figure (d–f)). The latter two differences between cases 1a and 2a indicate that the flow convergence and divergence are relatively weak when the central bars are fully submerged. It is noticed that when the central bars are exposed, the flow in branches needs to steer around the central bar, which can cause a large angle between the two flow directions at the confluence, and thus relatively strong flow convergence and divergence may occur. By contrast, when the central bars are fully submerged, the flow behavior resembles that of a straight channel, with flow predominantly moving straight along the main axis of the central bars. Therefore, a small angle between two tributary flow forms, and thus flow convergence and divergence are relatively mild.

4.1.3. Recirculation vortex

A recirculation vortex with a vertical axis is a typical structure usually found where flow steers sharply, and is generated from flow separation (Lu et al., Citation2023). This vortex structure is found in the confluence-bifurcation unit in the present study, marking several significant flow separation zones. Figure  shows the recirculation vortex structure at the bifurcation junction of the confluence-bifurcation unit. In both cases 1a and 2a, two recirculation vortices BV1 and BV2 are found at the bifurcation junction corner. Moreover, BV1 and BV2 seem well-established near the bed but tend to transform into premature ones in the upper flow, and there is also a tendency for the cores of BV1 and BV2 to shift downstream as they transition from the lower to the upper flow (Figure (a–c,d–f)). This finding indicates that flow separation zones exist at the bifurcation junction corner, and the vortex structure is similar in the separation zones under low and high discharges. These flow separation zones are generated due to the inertia effect as flow suddenly diverges and steers towards the curved side banks of the channel (Xie et al., Citation2020). Notably, two additional vortices BV3 and BV4 are found at both sides of the downstream bar in case 1a (Figure (a–c)), but no such vortices exist in case 2a. This difference shows that flow separation zones at both sides of the downstream bar are hard to form when the bars are completely submerged under the high discharge.

Figure 5. Recirculation vortices at the bifurcation junction (streamline view at three different slices over z-direction): (a)∼(c) case 1a, (d)∼(f) case 2a. The red solid line marked out the position of these vortices (BV1∼BV4).

Figure 5. Recirculation vortices at the bifurcation junction (streamline view at three different slices over z-direction): (a)∼(c) case 1a, (d)∼(f) case 2a. The red solid line marked out the position of these vortices (BV1∼BV4).

Similarly, Figure  shows the recirculation vortex structure at the confluence junction of the confluence-bifurcation unit. No noteworthy similarities but a key difference between the two cases are observed at this site. Two vortices CV1 and CV2 are found downstream of the confluence junction corner in case 1a (Figure (c)), which mark two separation zones. Conversely, no such separation zones are found in case 2a. In fact, separation zones were reported at similar sites under relatively low discharges in some previous studies (Ashmore et al., Citation1992, Luz et al., Citation2020, Sukhodolov & Sukhodolova, Citation2019; Xie et al., Citation2020). Nevertheless, the flow separation zones at the confluence corner are very restricted in the present study (Figure (c)). Ashmore et al. (Citation1992) also reported that no, or very restricted flow separation zones occur downstream of natural river confluence corners, primarily because of the relatively slow change in bank orientation compared with the sharp corners of laboratory confluences where separation is pronounced (Best & Reid, Citation1984; Best, Citation1988). In the present study, the bank orientation also changes slowly, which may explain why flow separation zones are inconspicuous at the confluence corner.

Figure 6. Recirculation vortices at the confluence junction (streamline view at three different slices over z-direction): (a)∼(c) case 1a, (d)∼(f) case 2a. The red solid line marked out the position of these vortices (CV1 & CV2).

Figure 6. Recirculation vortices at the confluence junction (streamline view at three different slices over z-direction): (a)∼(c) case 1a, (d)∼(f) case 2a. The red solid line marked out the position of these vortices (CV1 & CV2).

The differences in the distribution of recirculation vortices discussed above may be mainly attributed to the difference in the angle between the tributary flows under different discharges. Some previous studies have reported that the confluence/bifurcation angle can significantly influence the flow structure at confluences/bifurcations (Best & Roy, Citation1991; Ashmore et al., Citation1992; Miori et al., Citation2012). Although the confluence/bifurcation angle is fixed due to the determined central bar shape in the present study, the angle between two tributary flows is affected by the varying discharge. When the central bars are exposed under the low discharge, the flow is characterized by a more pronounced curvature of the streamlines, and a large angle between the two tributary flows is noted (Figure (b)), causing strong flow convergence and divergence. By contrast, a small angle forms as the central bars are submerged, thereby leading to relatively weak flow convergence/divergence (Figure (e)). Overall, the differences mentioned above can be attributed to the differences in the intensity of flow convergence and divergence under different discharges.

It should be noted that some previous studies (Constantinescu et al., Citation2011; Sukhodolov & Sukhodolova, Citation2019) presented that there is a wake mode in the mixing layer of two streams at the confluence junction. The wake mode means that in the mixing layer, multiple streamwise coherent vortices moving downstream will form, which is similar to the flow structure around a bluffing body (Constantinescu et al., Citation2011). However, no such structure has been found within the confluence-bifurcation unit in this study. According to the numerical simulations of Constantinescu et al. (Citation2011), a wake mode was found at a river confluence with a concordant bed and a momentum flux ratio of about 1. The confluence has a much larger angle (∼60°) between the two streams when compared to the confluence junction of the confluence-bifurcation unit in the present study where the angle is about 25°. As flow mechanics at river confluences may include several dominant mechanisms depending on confluence morphology, momentum ratio, the angle between the tributaries and the main channel, and other factors (Constantinescu et al., Citation2011), the relatively small confluence angle in the present study may explain why the wake mode is absent. The possible effects of the confluence/bifurcation angle are reserved for future study. Additionally, flow separation can lead to reduced local sediment transport capacity, thus causing considerable sediment deposition under natural conditions. Hence, the bank may migrate towards the inner side of the channel at the positions of CV1, CV2, BV1, and BV2, while the bar may expand laterally at the positions of BV3 and BV4.

4.1.4. Secondary current

Secondary current is the flow perpendicular to the mainstream axis (Thorne et al., Citation1985) and can be categorized into two primary types based on its origin: (1) Secondary current generated by the interaction between centrifugal force and pressure gradient force; (2) Secondary current resulting from turbulence heterogeneity and anisotropy (Lane et al., Citation2000). There are some widely recognized definitions of secondary current strength (SCS) (Lane et al., Citation2000). In this paper, the secondary current cells are identified by visible vortex with a streamwise axis, and the definition of SCS proposed by Shukry (Citation1950) is used: (18) SCS=uy2+uz2ux2+uy2+uz2(18) where ux, uy, and uz are flow velocities in x, y, and z directions and ux represents the mainstream flow velocity.

Figure  presents contour plots of SCS and the secondary current structure at key cross-sections of the study area. When the central bars are exposed, at the upstream bar tail (CS08), intense transverse flow occurs with flow converging to the centreline, but no secondary current cell is formed (Figure (a)). This is consistent with the findings of Hackney et al. (Citation2018). At the confluence junction (CS09), transverse flow still plays a major role in the secondary current structure, with flow converging to the centreline at the surface and diverging to side banks near the bed (Figure (b)). Moreover, ‘back-to-back’ helical cells, which are two vortices rotating reversely, tend to generate at CS09 with their cores located near the side banks (Figure (b)) (Mosley, Citation1976; Ashmore, Citation1982; Ashmore et al., Citation1992), yet their forms are rather premature. As the flow goes downstream, the cores of the helical cells gradually rise to the upper flow and approach towards the centreline, and the helical cells become well-established (Figure (c–e)). When the flow diverges again at the downstream bar head (CS15), the helical cells attenuate rapidly, and the secondary current structure is once again characterized predominantly by transverse flow (Figure (f)).

Figure 7. Distribution of secondary current strength and secondary current cells at six different cross-sections: (a)∼(f) case 1a, (g)∼(l) case 2a. The secondary current cells are identified by visible lateral vortices (streamline view). The zero distance of each cross-section is located on the right bank.

Figure 7. Distribution of secondary current strength and secondary current cells at six different cross-sections: (a)∼(f) case 1a, (g)∼(l) case 2a. The secondary current cells are identified by visible lateral vortices (streamline view). The zero distance of each cross-section is located on the right bank.

When the central bars are fully submerged under the high discharge, the secondary current structure at the upstream bar tail and the confluence junction exhibits a resemblance to that under the low discharge (Figure (g,h)). However, at CS09, two pairs of cells with different scales tend to form under the high discharge (Figure (h)). The large and premature helical cells are similar to those under the low discharge, whereas the small helical cells are located near side banks possibly due to wall effects. As the flow moves downstream, the large helical cells tend to diminish rapidly and merge with the small ones near both side walls (Figure (i–k)). Moreover, the secondary current structure is once again characterized predominantly by transverse flow at CS14 under the high discharge, which occurs earlier than that under the low discharge (Figure (k)). At the downstream bar head, transverse flow still takes a dominant place, while the helical cells seem to become premature with increased scale (Figure (l)).

In general, in both cases 1a and 2a, the lateral distribution of SCS at all cross-sections is symmetrical about the channel centreline, where SCS is relatively small. A relatively high SCS is detected at both the upstream bar tail and the downstream bar head due to the effects of centrifugal force caused by flow steering. SCS decreases rapidly from the upstream bar tail (CS08) to the entrance of the downstream bifurcation junction (CS14), followed by a sudden increase at the downstream bar head (CS15) (Figure (a–e, g–k)). However, the distribution of high-SCS zones is different between the two discharges. Under the low discharge, high-SCS zones appear along the bottom near the centerline and at the free surface on both sides of the centreline. Although similar high-SCS zones are found along the bottom near the centerline under the high discharge, the high-SCS zones are not found at the free surface. Furthermore, it is noticed that more obvious high-SCS zones appear under the low discharge compared with the high discharge, especially at CS09. This may be attributed to the differences in the intensity of flow convergence and divergence under different submerging conditions of the central bars. When the central bars are exposed, flow convergence and divergence are strong and sharp flow steering occurs, thereby causing large SCS. By contrast, when the central bars are fully submerged, flow convergence and divergence are relatively weak, and thus small SCS is observed.

4.1.5. Turbulent characteristics

Turbulent characteristics reflect the performance of energy and momentum transfer activities in flow (Sukhodolov et al., Citation2017). Comprehensive analysis of turbulent characteristics is crucial as they greatly impact the incipient motion, settling behavior, diffusion pattern, and transport process of sediment. Here, the TKE and turbulent dissipation rate (TDR) of flow in the confluence-bifurcation unit are analyzed.

Figure  shows the distribution of TKE on various cross-sections in cases 1a and 2a. In the same way, Figure  shows the distribution of TDR. The values of TKE and TDR are nondimensionalized with mid-values of TKE = 0.005 m2·s−2 and TDR = 0.007 m3·s−2. In both cases 1a and 2a, the distributions of TKE and TDR show symmetrical patterns concerning the channel centreline. High-TKE and high-TDR zones exhibit a belt distribution near the channel bottom (McLelland et al., Citation1999; Ashworth, Citation1996; Constantinescu et al., Citation2011), indicating that turbulence primarily originates at the channel bottom due to the influence of bed shear stress. A sudden increase of TKE (Weber et al., Citation2001) and TDR occurs near the channel bottom at the confluence junction [Figure  and 9, CS08∼CS09] and from the entrance of the bifurcation junction (CS14) to the downstream bar head (CS15) (Figures  and ).

Figure 8. Turbulent kinetic energy contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a. TKE = turbulent kinetic energy. TKE’ =  dimensionless value of TKE, with regard to a mid-value of TKE = 0.005 m2·s−2.

Figure 8. Turbulent kinetic energy contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a. TKE = turbulent kinetic energy. TKE’ =  dimensionless value of TKE, with regard to a mid-value of TKE = 0.005 m2·s−2.

Figure 9. Turbulent dissipation rate contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a. TDR = turbulent dissipation rate. TDR’ =  dimensionless value of TDR, with regard to a mid-value of TDR = 0.007 m3·s−2.

Figure 9. Turbulent dissipation rate contours at eight different cross-sections in the confluence-bifurcation unit: (a) case 1a, (b) case 2a. TDR = turbulent dissipation rate. TDR’ =  dimensionless value of TDR, with regard to a mid-value of TDR = 0.007 m3·s−2.

Figure 10. Comparison of the distribution of time-averaged streamwise flow velocity along the flow depth at different cross-sections between the confluence-bifurcation unit and the single confluence. (a)∼(f) 1a vs. 1b, (g)∼(l) 2a vs. 2b.

Figure 10. Comparison of the distribution of time-averaged streamwise flow velocity along the flow depth at different cross-sections between the confluence-bifurcation unit and the single confluence. (a)∼(f) 1a vs. 1b, (g)∼(l) 2a vs. 2b.

Despite the common turbulent characteristics between cases 1a and 2a, additional high-TKE zones are found in the upper flow at the upstream bar tail (CS08), the confluence junction (CS09) and the downstream bar head (CS15) (Figure ) when the central bars are fully submerged. The formation mechanism of these high-TKE zones near the water surface is more complicated, which may result from interactions of velocity gradient, secondary current structure and wall shear stress (Engel & Rhoads, Citation2017; Lu et al., Citation2023).

4.2. Comparison with single confluence/bifurcation cases

In this section, the results of a single confluence (cases 1b and 2b) and a single bifurcation (cases 1c and 2c) are compared with those of the confluence-bifurcation unit (cases 1a and 2a) under two discharges. Flow structure at CS08∼CS15 is mainly concerned below.

4.2.1. Comparison with single confluence cases

First, the patterns of time-averaged streamwise velocity, TKE and TDR within the single confluence (presented by contour plots in the supplementary materials) are assessed and then compared with those within the confluence-bifurcation unit (Figures , , and ). It is found that distributions of these parameters are similar in the confluence-bifurcation unit and the single confluence from the upstream bar tail (CS08) to the entrance of the bifurcation junction (CS14), despite varying discharges. As the existence of the downstream central bar is the main difference between the single confluence and the confluence-bifurcation unit, this finding indicates that the downstream bar may have limited influence on the flow structure in the confluence-bifurcation unit. In other words, the flow structure in the confluence-bifurcation unit appears to be mainly shaped by the presence of the upstream bar, with its impact potentially reaching as far as the entrance of the bifurcation (CS14). Moreover, under the low discharge, the two high-velocity cores seem to merge later (at CS11) in the single confluence than in the confluence-bifurcation unit (at CS10), which indicates the convergence of two tributary flows may achieve a steady state faster in the confluence-bifurcation unit. To further elucidate the differences, results on the distribution of time-averaged streamwise velocity and TKE along the flow depth are discussed below.

4.2.1.1. Time-averaged streamwise velocity

Figure  shows the distribution of time-averaged streamwise flow velocity along the flow depth at different cross-sections. Note that α = 0.5 denotes the channel centreline and α = 0.7 denotes a position near the side banks. As only marginal differences are found at α = 0.3 and 0.7, only profiles at α = 0.7 are displayed for clarity.

Under the low discharge, no obvious difference in the distribution of time-averaged streamwise flow velocity is observed at the upstream bar tail (Figure (a)). At the confluence junction (Figure (b)), the velocities near the side banks (α = 0.7) are larger than those at the centre (α = 0.5) in both the confluence-bifurcation unit and the single confluence, which suggests that the two tributary flows have not sufficiently merged. The two tributary flows achieve convergence at CS11 in both the confluence-bifurcation unit and the single confluence (Figure (c)), with the velocity at the centre (α = 0.5) is larger than that near the side banks. Nevertheless, the velocities at the centre (α = 0.5) and near the side banks (α = 0.7) are closer to each other in the confluence-bifurcation unit than those in the single confluence, which represents less sufficient flow convergence in the confluence-bifurcation unit than in the single confluence. Therefore, it can be inferred that the convergence of two tributary flows may achieve a steady state faster in the confluence-bifurcation unit. After reaching the steady state, the velocity near the side banks (α = 0.7) is smaller in the single confluence than in the confluence-bifurcation unit despite close values at the centre (α = 0.5) (Figure (d,e)). This leads to a more pronounced disparity between velocities at the centre and near the side banks in the single confluence than that observed in the confluence-bifurcation unit. In other words, the high-velocity zone is more concentrated on the channel centreline in the single confluence, while the lateral distribution of flow velocity tends to be more uniform in the confluence-bifurcation unit. This may be attributed to the influence of the downstream central bar, which is further proved by comparing the velocity profiles at CS15 (Figure (e)).

As for the high discharge condition, from CS08 to CS14, the quantitative differences in velocity distribution between the confluence-bifurcation unit and the single confluence seem small. This indicates that the effect of morphology appears to be subdued when the central bars are fully submerged under the high discharge. It should be also noted that under both the low and high discharge, velocity profiles at the corresponding location exhibit the same shapes in the confluence-bifurcation unit and the single confluence, which indicates that the upstream confluence may dominate the flow structure in the confluence-bifurcation unit.

4.2.1.2. Secondary current

Figure  shows contour plots of SCS and the secondary current structure for single confluence cases. Compared with , under both low and high discharge conditions, the distribution of SCS and the structure of helical cells in the confluence-bifurcation unit and the single confluence are very similar from CS08 to CS12 (Figure (a–d, g–j) and Figure (a–d, g–j)]. This indicates that the secondary current structure in the confluence-bifurcation unit exhibits certain consistent features when compared to those in the single confluence, thus proving that the effects of the upstream central bar may dominate the flow structure in the confluence-bifurcation unit. However, the secondary current structure at CS14 and CS15 is different between the confluence-bifurcation unit and the single confluence (Figure  and (e, f, k,l)). Under the low discharge, transverse flow is from the side banks to the centre and relatively high SCS is found near the side banks at CS14 in the single confluence, while the transverse flow is always from the centre to the side banks and SCS is relatively low at the corresponding sites in the confluence-bifurcation unit (Figure (e)). Under the high discharge, the helical cells near the side walls almost diminish in the single confluence, while they still exist in the confluence-bifurcation unit at CS14 (Figure (k)). Under both low and high discharges, the secondary current pattern at CS15 is similar to that at CS14 in the single confluence, while they are different in the confluence-bifurcation unit due to the existence of the downstream central bar. This comparison indicates that the existence of the downstream central bar can influence the upstream secondary current structure, nevertheless, the effects are fairly limited.

Figure 11. Secondary current at different cross-sections in the single confluence condition: (a)∼(f) case 1b, (g)∼(l) case 2b. The zero distance of each cross-section is located on the right bank.

Figure 11. Secondary current at different cross-sections in the single confluence condition: (a)∼(f) case 1b, (g)∼(l) case 2b. The zero distance of each cross-section is located on the right bank.

4.2.1.3. Turbulent kinetic energy

Figure  shows TKE distribution along the flow depth at different cross-sections. Under the low discharge, in general, the maximum TKE tends to appear near the channel bottom in both the confluence-bifurcation unit and the single confluence. No obvious difference is observed at the upstream bar tail (CS08) (Figure (a)). Downstream this site (at CS09), the maximum TKE near the side banks (α = 0.7) is larger than that at the channel centre in the single confluence, while they are close to each other in the confluence-bifurcation unit (Figure (b)). This can also be attributed to the insufficient convergence of the two tributary flows. At CS11, flow convergence achieves a steady state in the confluence-bifurcation unit, while it remains insufficient in the single confluence. As flow convergence reaches a steady state at CS12, the maximum TKE in the single confluence exhibits a more concentrated distribution on the channel centre than that in the confluence-bifurcation unit (Figure (d)). This effect becomes more obvious downstream at CS14 (Figure (e)). The less-concentrated distribution of the maximum TKE in the confluence-bifurcation unit can be owing to the effects of the downstream central bar as well, which appears analogous to that mentioned in 4.2.1.1.

Figure 12. Comparison of the distribution of TKE along the flow depth at different cross-sections between the confluence-bifurcation unit and the single confluence. (a)∼(f) 1a vs. 1b, (g)∼(l) 2a vs. 2b.

Figure 12. Comparison of the distribution of TKE along the flow depth at different cross-sections between the confluence-bifurcation unit and the single confluence. (a)∼(f) 1a vs. 1b, (g)∼(l) 2a vs. 2b.

Under the high discharge condition, two peaks of TKE appear in both the confluence-bifurcation unit and the single confluence (Figure (g–l)). Moreover, in both the confluence-bifurcation unit and the single confluence, from the upstream bar tail to the downstream bar head, the peak of TKE in the upper flow is larger at the channel centre (α = 0.5), while the peak of TKE in the lower flow is larger near the side banks (α = 0.7). However, the disparity between the TKE near the side banks and at the channel centre seems to be larger in the single confluence, while the TKE in the confluence-bifurcation unit takes a more uniform distribution. Even though, TKE profiles at the corresponding location exhibit highly similar shapes in the confluence-bifurcation unit and the single confluence, suggesting that the effects of channel morphology seem to be inhibited when the central bars are submerged under the high discharge.

4.2.2. Comparison with single bifurcation cases

Distributions of time-averaged streamwise velocity, TKE and TDR at corresponding cross-sections are also compared between the single bifurcation (see the Supplementary material) and the confluence-bifurcation unit (Figures , and ). Unlike the high similarity in flow characteristics exhibited between the confluence-bifurcation unit and the single confluence, significant differences are found between the confluence-bifurcation unit and the single bifurcation, especially at CS08∼CS14. On the one hand, the high-velocity zones are broader and asymmetrical concerning the channel centreline in the single bifurcation, with a belt-like and an approximately elliptic-like distribution respectively under the low and high discharges. By contrast, the high-velocity zone is a core that concentrates on the channel centre in the confluence-bifurcation unit. Moreover, the maximum velocity seems smaller in the single bifurcation than that in the confluence-bifurcation unit. On the other hand, the high-TKE belt near the channel bottom appears to be narrower in the single bifurcation than in the confluence-bifurcation unit, especially at CS08∼CS14 under the low discharge. Furthermore, additional high-TKE zones are found near the side walls at CS08∼CS11 in the single bifurcation, of which the scale is obviously smaller than those in the confluence-bifurcation unit. In addition, TKE at the channel centre is smaller near the free surface in the single bifurcation than that in the confluence-bifurcation unit. Nevertheless, the distributions of velocity, TKE and TDR seem to be similar in the confluence-bifurcation unit and the single bifurcation at CS15. As the existence of the upstream central bar is the main difference between the single confluence and the confluence-bifurcation unit, all the above findings indicate that the upstream central bar greatly influences the flow structure in the confluence-bifurcation unit. On the other hand, the downstream central bar may have a restricted influence on the flow structure in the confluence-bifurcation unit, whose impact may be limited to a range between the entrance of the bifurcation (CS14) and the downstream bar head (CS15). To further elucidate the differences, results on the distribution of time-averaged streamwise velocity and TKE along the flow depth are discussed below.

4.2.2.1. Time-averaged streamwise velocity

Figure  shows the distribution of time-averaged streamwise velocity along the flow depth at different cross-sections. Under the low discharge, distinct distribution patterns of flow velocity between the confluence-bifurcation unit and the single bifurcation are found at CS08, CS09 and CS11, which can be attributed to the effects of upstream flow convergence (Figure (a–c)). However, when the flow convergence reaches a steady state in the confluence-bifurcation unit (Figure (d–f)), the high-velocity zone is more concentrated in the confluence-bifurcation unit than in the single bifurcation due to to the significant influence of the upstream central bar on the flow structure. The velocity profiles at the downstream bar head can be a shred of evidence as well, with the maximum velocity larger at the channel centre but smaller near the side banks in the confluence-bifurcation unit than in the single bifurcation.

Figure 13. Comparison of the distribution of time-averaged streamwise flow velocity along the flow depth at different cross-sections between the confluence-bifurcation unit and the single bifurcation. (a)∼(f) 1a vs. 1c, (g)∼(l) 2a vs. 2c.

Figure 13. Comparison of the distribution of time-averaged streamwise flow velocity along the flow depth at different cross-sections between the confluence-bifurcation unit and the single bifurcation. (a)∼(f) 1a vs. 1c, (g)∼(l) 2a vs. 2c.

Under the high discharge, the distribution of velocity seems to exhibit limited differences between the two kinds of morphology, which indicates that the effects of channel morphology may be less noticeable when the central bars are fully submerged under the high discharge. Nevertheless, the velocity in the lower flow (below a relative depth of 0.45) shows a uniform lateral distribution in the single bifurcation, as the velocity profile at the channel centreline (α = 0.5) is in line with that near the side banks (α = 0.7) (Figure (g–l)). However, in the confluence-bifurcation unit, different velocity distributions in the lower flow can be observed at the channel centreline (α = 0.5) and near the side banks (α = 0.7). The foregoing results indicate that when the central bars are fully submerged, the high-velocity zones are more concentrated on the channel centreline in the confluence-bifurcation unit, while the lateral distribution of flow velocity within the single bifurcation tends to be more uniform, especially near the bifurcation junction (Figure (j,k)). This can also be attributed to the dominant influence of the upstream central bar over the downstream central bar.

It is also noted that the flow velocity distribution along the flow depth in the confluence-bifurcation unit is of a similar pattern despite varying discharges. As a critical point, the maximum velocity appears in the upper flow. The distribution above the critical point is approximately linear whereas it appears logarithmic below. By contrast, despite the similarity observed under the low discharge, the flow velocity distribution along the flow depth within the single bifurcation exhibits a distinct pattern under the high discharge, especially near the side banks (Figure (e–h)). On the one hand, the critical point in the upper flow no longer corresponds to the maximum velocity. On the other hand, the velocity distribution deviates from logarithmic below the critical point, with the maximum velocity appearing at a relative depth of 0.45. Succinctly, the distribution of streamwise velocity along the flow depth may retain the same pattern regardless of discharge levels in the confluence-bifurcation unit, while it may exhibit distinct patterns under different discharge levels in the single bifurcation.

4.2.2.2. Secondary current

Figure  shows contour plots of SCS and the distribution of secondary current for single bifurcation cases. In general, the value of SCS near the side banks at CS08∼CS14 (Figure (a–d, g–j)) in the single bifurcation seems smaller than that in the confluence-bifurcation unit (Figure (a–d, g–j)), especially under the low discharge. SCS distribution at CS14 is similar in the confluence-bifurcation unit and the single bifurcation under both low and high discharges. This difference in SCS distribution between the confluence-bifurcation unit and the single bifurcation indicates that the downstream bifurcation may have a restricted influence on the flow structure in the confluence-bifurcation unit. This influence is limited to a range between the entrance of the bifurcation (CS14) and the downstream bar head (CS15).

Figure 14. Secondary current at different cross-sections in the single bifurcation condition: (a)∼(f) case 1c, (g)∼(l) case 2c. The zero distance of each cross-section is located on the right bank.

Figure 14. Secondary current at different cross-sections in the single bifurcation condition: (a)∼(f) case 1c, (g)∼(l) case 2c. The zero distance of each cross-section is located on the right bank.

In addition, the secondary current structure may also present different patterns in response to varying channel morphologies and discharge conditions. Under the low discharge condition, multiple unstable helical cells with asymmetrical distribution are formed from CS08 to CS12 in the single bifurcation (Figure (a–d)), while no obvious helical cells are found at CS14 and CS15 (Figure (d,e)). These findings are quite different from the stable and symmetrical helical cells at all cross-sections shown in the confluence-bifurcation unit (Figure ). This difference may be attributed to the significant influence of the upstream central bar and the limited influence of the downstream central bar. Under the high discharge condition, only one pair of premature helical cells are found from CS08 to CS12 in the single bifurcation with their cores located near the side banks (Figure (e,f)). As the flow moves downstream, the helical cells gradually develop and become well-established (Figure (g,h)). These helical cells in the single bifurcation show symmetric cross-sectional distribution and a similar longitudinal development as in the confluence-bifurcation unit. However, in the confluence-bifurcation unit, two pairs of helical cells appear upstream of CS12 and CS14 and gradually fuse to one pair under the high discharge. As the ‘two-pairs’ structure in the confluence-bifurcation unit origins from the upstream confluence, the differences in the secondary current structure between the single bifurcation and the confluence-bifurcation unit under the high discharge can also be owing to the effects of the upstream central bar in excess of those of the downstream central bar.

4.2.2.3. Turbulent kinetic energy

Figure  shows the TKE distribution along the flow depth at different cross-sections. Under the low discharge, when the two tributary flows have not achieved sufficient convergence in the confluence-bifurcation unit, the maximum TKE is more concentrated in the single bifurcation (Figure (a–c)). As flow convergence achieves a steady state, more concentrated high-TKE zones appear at the channel centre within the confluence-bifurcation unit, confirming the finding that the effects of the upstream central bar reign over those of the downstream central bar in the confluence-bifurcation unit. However, things can be very complicated under the high discharge. For TKE distribution at the channel centreline, two peaks appear in the confluence-bifurcation unit with one close to the free surface and the other near the bed (Figure (g–l)). By contrast, only one peak near the bed is present in the single bifurcation. Therefore, a larger TKE can be found in the upper flow of the channel centreline in the confluence-bifurcation unit. For TKE distribution near the side banks, two peaks appear in both the confluence-bifurcation unit and the single bifurcation at CS09∼CS14 (Figure (h–l)). The upper peak is larger but the lower peak is smaller within the single bifurcation than those within the confluence-bifurcation unit. These significant discordances in TKE distribution under the high discharge further prove that the effects of the upstream bar on the flow structure in the confluence-bifurcation unit are more prominent than those of the downstream central bar.

Figure 15. Comparison of the distribution of TKE along the flow depth at different cross-sections between the confluence-bifurcation unit and the single bifurcation. (a)∼(f) 1a vs. 1c, (g)∼(l) 2a vs. 2c.

Figure 15. Comparison of the distribution of TKE along the flow depth at different cross-sections between the confluence-bifurcation unit and the single bifurcation. (a)∼(f) 1a vs. 1c, (g)∼(l) 2a vs. 2c.

4.2.3. Further discussion of the comparisons

The above subsections have revealed significant differences in flow structure within the confluence-bifurcation unit and the single confluence and bifurcation, which directly result from the distinct channel morphologies and vary with the discharge conditions as well. These differences are summarized and further discussed below.

The distinctive morphology of a confluence-bifurcation unit plays a pivotal role in governing streamwise flow velocity distribution, secondary current structure, and turbulent kinetic energy distribution within the channel. Generally, from the upstream bar tail (CS08) to the entrance of the bifurcation (CS14), the flow structure in the confluence-bifurcation unit is highly similar to that in the single confluence, while it exhibits great differences (as shown in 4.2.2) between the confluence-bifurcation unit and the single bifurcation. This indicates that the upstream central bar greatly influences the flow structure in the confluence-bifurcation unit, with the effects spreading to the entrance of the bifurcation. At the downstream bar head (CS15), the flow structure (e.g. the transverse flow patterns) in the confluence-bifurcation unit exhibits high similarity to that in the single bifurcation. However, these similarities do not spread to upstream cross-sections, suggesting that the influence of the downstream central bar is limited at the bifurcation junction. In a word, the effects of the upstream central bar on the flow structure in the confluence-bifurcation unit are in excess of those of the downstream central bar.

However, despite the influence of channel morphology, discharge may also have some important effects on the streamwise flow velocity distribution. On the one hand, when the central bars are exposed under the low discharge, the high-velocity zone is less concentrated in the confluence-bifurcation unit than in the single confluence, while it is more concentrated in the confluence-bifurcation unit than in the single bifurcation. On the other hand, it is noticed that when the central bars are fully submerged under the high discharge, reduced differences in flow structure between the confluence-bifurcation unit and the single confluence/bifurcation are witnessed, and thus the morphology effect seems to be subdued.

4.3. Implications

The present work unravels the flow structure in a laboratory-scale confluence-bifurcation unit and takes the first step to further investigating morphodynamics in such channel morphology. Based on the comparison with a single confluence/bifurcation, the findings provide insight into the complex 3D interactions between water flow and channel morphology. The distinct flow structure in the laboratory-scale confluence-bifurcation unit may appreciably alter sediment transport and morphological evolution, of which research is underway. As the basic morphological element of braided river planform is confluence-bifurcation units, the present work should have direct implications for flow structure in natural braided rivers. This is pivotal for the sustainable management of braided rivers which deals with water and land resources planning, eco-hydrological well-being, and infrastructure safety such as cross-river bridges and oil pipelines (Redolfi et al., Citation2019; Ragno et al., Citation2021).

Notably, braided rivers worldwide (e.g. in the Himalayas, North America, and New Zealand) have undergone increased pressures and will continue to evolve due to forces of global climate change and intensified anthropogenic activities (Caruso et al., Citation2017; Hicks et al., Citation2021; Lu et al., Citation2022). In particular, channel aggradation caused by increased sediment supply as well as exploitation of braidplain compromise space for flood conveyance, making the rivers prone to flooding. In this sense, an enhanced understanding of the flow structure under high discharge when central bars are fully submerged is essential for mitigating flooding hazards.

5. Conclusions

This study has numerically investigated the 3D flow structure in a laboratory-scale confluence-bifurcation unit based on the LES model integrated in the FLOW-3D® software platform. Two different discharges are considered with the central bars fully submerged or exposed respectively when the discharge is high or low. Cases of a single confluence/bifurcation are included for comparison. The key findings of this paper are as follows:

  1. Several differences are highlighted in the comparison of the flow structure in the confluence-bifurcation unit between the two discharges. When the central bars are fully submerged under the high discharge, the mixing layer of two tributary flows is less obvious, and two high-velocity cores merge more rapidly as compared with those under the low discharge. Besides, flow separation zones are found neither at the confluence corner nor on both sides of the downstream bar when the central bars are fully submerged. Moreover, SCS seems to be smaller near the side banks under the high discharge than under the low discharge. Therefore, it is suggested that flow convergence/divergence is relatively weak in the confluence-bifurcation unit when central bars are fully submerged under the high discharge.

  2. From the upstream bar tail to the entrance of the bifurcation, the flow structure in the confluence-bifurcation unit is highly similar to that in the single confluence, while it exhibits great differences from that in the single bifurcation. Only at the downstream bar head does the flow structure in the confluence-bifurcation unit exhibit high similarity to that in the single bifurcation. Consequently, the effects of the upstream central bar on the flow structure in the confluence-bifurcation unit reign over those of the downstream central bar.

  3. Despite the influence of channel morphology, discharge may also have significant effects on the distribution of streamwise flow velocity. On the one hand, when the central bars are exposed under the low discharge, the high-velocity zone is less concentrated in the confluence-bifurcation unit than in the single confluence, while it is more concentrated in the confluence-bifurcation unit than in the single bifurcation. On the other hand, when the central bars are fully submerged under the high discharge, reduced differences in flow structure between the confluence-bifurcation unit and the single confluence/bifurcation are witnessed, and thus the morphology effect seems to be subdued.

It is noticed that the effects of other factors (e.g. confluence and bifurcation angles, bed discordance) on the flow structure in the confluence-bifurcation unit are not discussed here. Studies on these issues are warranted and reserved for future work.

Nomenclature

Symbols=

Physical meaning {SI unit}

LCB=

the length of the confluence-bifurcation unit {m}

B=

the width of the confluence-bifurcation unit {m}

Bi=

the width of a single branch {m}

Lb=

the length of a central bar {m}

Bb=

the width of a central bar {m}

LT1=

the length of the downstream part of a central bar {m}

LT2=

the length of the upstream part of a central bar {m}

Lin=

the length of the inlet part of the conceptual flume {m}

Lout=

the length of the outlet part of the conceptual flume {m}

ψ=

cross-section width-depth coefficient {dimensionless}

φ=

cross-section width-depth component {dimensionless}

Sb=

bed slope {dimensionless}

x, y, z=

Cartesian coordinates {m}

Qin=

the inlet discharge {m3·s−1}

Zout=

the outlet free surface elevation {m}

Mr=

momentum flux ratio {dimenionless}

u¯i=

resolved velocity component in the i – direction (i goes from 1 to 3, denoting the x-, y – and z-directions, respectively) {m·s−1}

t=

flow time {s}

ρ=

density of the fluid {kg·m-3}

p¯=

resolved pressure {kg·m−1·s−2}

τij=

sub-grid scale stress {kg·m−1·s−2}

G¯i=

body acceleration {m·s−2}

νSGS=

sub-grid scale turbulent viscosity {m2·s−1}

S¯ij=

rate-of-strain tensor {s−1}

Cs=

the Smagorinsky constant {dimensionless}

Δx, Δy, Δz=

mesh scales {m}

f=

fluid phase fraction function {dimensionless}

V=

turbulent velocity fluctuations {m·s−1}

α=

the dimensionless lateral position of a certain point {dimensionless}

s=

the lateral distance between a certain point and the left boundary of the flume {m}

Fr=

Froude number {dimensionless}

SCS=

secondary current strength {dimensionless}

TKE=

turbulent kinetic energy {m2·s−2}

TDR=

turbulent dissipation rate {m3·s−2}

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China [grant number: 52239007].

References

  • Ashmore, P. E. (1982). Laboratory modelling of gravel braided stream morphology. Earth Surface Processes and Landforms, 7(3), 201–225. https://doi.org/10.1002/esp.3290070301
  • Ashmore, P. E. (1991). How do gravel-bed rivers braid? Canadian Journal of Earth Sciences, 28(3), 326–341. https://doi.org/10.1139/e91-030
  • Ashmore, P. E. (2013). Morphology and dynamics of braided rivers. In J. Shroder, & (Editor in Chief) E. Wohl (Eds.), Treatise on geomorphology (Vol. 9, pp. 289–312). https://doi.org/10.1016/B978-0-12-374739-6.00242-6
  • Ashmore, P. E., Ferguson, R. I., Prestegaard, K. L., Ashworth, P. J., & Paola, C. (1992). Secondary flow in anabranch confluences of a braided, gravel-bed stream. Earth Surface Processes and Landforms, 17(3), 299–311. https://doi.org/10.1002/esp.3290170308
  • Ashworth, P. J. (1996). Mid channel bar growth and its relationship to local flow strength and direction. Earth Surface Processes and Landforms, 21(2), 103–123.
  • Bertoldi, W., & Tubino, M. (2005). Bed and bank evolution of bifurcating channels. Water Resources Research, 41(7), W07001. https://doi.org/10.1029/2004WR003333
  • Bertoldi, W., & Tubino, M. (2007). River bifurcations: Experimental observations on equilibrium configurations. Water Resources Research, 43(10), W10437. https://doi.org/10.1029/2007WR005907
  • Best, J. L. (1987). Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In F. G. Ethridge, R. M. Flores, & M. D. Harvey (Eds.), Recent developments in fluvial sedimentology (pp. 27–35).
  • Best, J. L. (1988). Sediment transport and bed morphology at river channel confluences. Sedimentology, 35(3), 481–498. https://doi.org/10.1111/j.1365-3091.1988.tb00999.x
  • Best, J. L., & Reid, I. (1984). Separation zone at open-channel junctions. Journal of Hydraulic Engineering, 110(11), 1588–1594. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1588)
  • Best, J. L., & Roy, A. G. (1991). Mixing-layer distortion at the confluence of channels of different depth. Nature, 350(6317), 411–413. https://doi.org/10.1038/350411a0
  • Biron, P. M., Buffin-Bélanger, T., & Martel, N. (2019). Three-dimensional turbulent structures at a medium-sized confluence with and without an ice cover. Earth Surface Processes and Landforms, 44(15), 3042–3056. https://doi.org/10.1002/esp.4718
  • Bombardelli, F. A., Meireles, I., & Matos, J. (2011). Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 11(3), 263–288. https://doi.org/10.1007/s10652-010-9188-6
  • Bradbrook, K. F., Biron, P. M., Lane, S. N., Richards, K. S., & Roy, A. G. (1998). Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrological Processes, 12(8), 1371–1396. https://doi.org/10.1002/(SICI)1099-1085(19980630)12:8<1371::AID-HYP620>3.0.CO;2-C
  • Caruso, B., Newton, S., King, R., & Zammit, C. (2017). Modelling climate change impacts on hydropower lake inflows and braided rivers in a mountain basin. Hydrological Sciences Journal, 62(6), 928–946. https://doi.org/10.1080/02626667.2016.1267860
  • Constantinescu, G., Miyawaki, S., Rhoads, B., & Sukhodolov, A. (2016). Influence of planform geometry and momentum ratio on thermal mixing at a stream confluence with a concordant bed. Environmental Fluid Mechanics, 16(4), 845–873. https://doi.org/10.1007/s10652-016-9457-0
  • Constantinescu, G., Miyawaki, S., Rhoads, B., Sukhodolov, A., & Kirkil, G. (2011). Structure of turbulent flow at a river confluence with momentum and velocity ratios close to 1: Insight provided by an eddy-resolving numerical simulation. Water Resources Research, 47(5), W05507. https://doi.org/10.1029/2010WR010018
  • De Serres, B., Roy, A. G., Biron, M. P., & Best, J. L. (1999). Three-dimensional structure of flow at a confluence of river channels with discordant beds. Geomorphology, 26(4), 313–335. https://doi.org/10.1016/S0169-555X(98)00064-6
  • Duguay, J., Biron, P., & Buffin-Bélanger, T. (2022). Large-scale turbulent mixing at a mesoscale confluence assessed through drone imagery and eddy-resolved modelling. Earth Surface Processes and Landforms, 47(1), 345–363. https://doi.org/10.1002/esp.5251
  • Egozi, R., & Ashmore, P. E. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114, F02012. https://doi.org/10.1029/2008JF001099
  • Engel, F. L., & Rhoads, B. L. (2017). Velocity profiles and the structure of turbulence at the outer bank of a compound meander bend. Geomorphology, 295, 191–201. https://doi.org/10.1016/j.geomorph.2017.06.018
  • Ettema, R., & Armstrong, D. L. (2019). Bedload and channel morphology along a braided, sand-bed channel: Insights from a large flume. Journal of Hydraulic Research, 57(6), 822–835. https://doi.org/10.1080/00221686.2018.1555557
  • Federici, B., & Paola, C. (2003). Dynamics of channel bifurcations in noncohesive sediments. Water Resources Research, 39(6), 1162. https://doi.org/10.1029/2002WR001434
  • Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Aalto, R., Nicholas, A. P., & Best, J. L. (2018). The influence of flow discharge variations on the morphodynamics of a diffluence-confluence unit on a large river. Earth Surface Processes and Landforms, 43(2), 349–362. https://doi.org/10.1002/esp.4204
  • Hicks, D. M., Baynes, E. R. C., Measures, R., Stecca, G., Tunnicliffe, J., & Fredrich, H. (2021). Morphodynamic research challenges for braided river environments: Lessons from the iconic case of New Zealand. Earth Surface Processes and Landforms, 46(1), 188–204. https://doi.org/10.1002/esp.5014
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Hua, Z. L., Gu, L., & Chu, K. J. (2009). Experiments of three-dimensional flow structure in braided rivers. Journal of Hydrodynamics, 21(2), 228–237. https://doi.org/10.1016/S1001-6058(08)60140-7
  • Hundey, E. J., & Ashmore, P. E. (2009). Length scale of braided river morphology. Water Resources Research, 45(8), W08409. https://doi.org/10.1029/2008WR007521
  • Iwantoro, A. P., van der Vegt, M., & Kleinhans, M. G. (2022). Stability and asymmetry of tide-influenced river bifurcations. Journal of Geophysical Research: Earth Surface, 127(6), e2021JF006282. https://doi.org/10.1029/2021JF006282
  • Jang, C. L., & Shimizu, Y. (2005). Numerical simulation of relatively wide, shallow channels with erodible banks. Journal of Hydraulic Engineering, 131, 565–575.
  • Kelly, S. (2006). Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modelling. In G. H. Smith, J. L. Best, C. S. Bristow, & G. E. Petts (Eds.), Braided rivers: Process, deposits, ecology and management (pp. 75–106).
  • Lane, S. N., Bradbrook, K. F., Richards, K. S., Biron, P. M., & Roy, A. G. (2000). Secondary circulation cells in river channel confluences: Measurement artefacts or coherent flow structures? Hydrological Processes, 14(11-12), 2047–2071. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2047::AID-HYP54>3.0.CO;2-4
  • Le, T. B., Khosronejad, A., Sotiropoulos, F., Bartelt, N., Woldeamlak, S., & Dewall, P. (2019). Large-eddy simulation of the Mississippi River under base-flow condition: Hydrodynamics of a natural diffluence-confluence region. Journal of Hydraulic Research, 57(6), 836–851. https://doi.org/10.1080/00221686.2018.1534282
  • Liu, C. B., Li, J., Bu, W. Y., Ma, W. X., Shen, G., & Yuan, Z. (2018). Large eddy simulation for improvement of performance estimation and turbulent flow analysis in a hydrodynamic torque converter. Engineering Applications of Computational Fluid Mechanics, 12(1), 635–651. https://doi.org/10.1080/19942060.2018.1489896
  • Liu, Z. (2012). Investigation of flow characteristics around square cylinder with inflow turbulence. Engineering Applications of Computational Fluid Mechanics, 6(3), 426–446. https://doi.org/10.1080/19942060.2012.11015433
  • Lu, G. W., Liu, J. X., Cao, Z. X., Li, Y. W., Lei, X. T., & Li, Y. (2023). A computational study of 3D flow structure in two consecutive bends subject to the influence of tributary inflow in the middle Yangtze River. Engineering Applications of Computational Fluid Mechanics, 17(1), 2183901. https://doi.org/10.1080/19942060.2023.2183901
  • Lu, H. Y., Li, Z. W., Hu, X. Y., Chen, B., & You, Y. C. (2022). Morphodynamic processes in a large gravel–bed braided channel in response to runof change: A case study in the Source Region of Yangtze River. Arabian Journal of Geosciences, 15(5), 377. https://doi.org/10.1007/s12517-022-09641-y
  • Luz, L. D., Szupiany, R. N., Parolin, M., Silva, A., & Stevaux, J. C. (2020). Obtuse-angle vs. confluent sharp meander bends: Insights from the Paraguay-Cuiabá confluence in the tropical Pantanal wetlands, Brazil. Geomorphology, 348, 106907. https://doi.org/10.1016/j.geomorph.2019.106907
  • Marra, W. A., Parsons, D. R., Kleinhans, M. G., Keevil, G. M., & Thomas, R. E. (2014). Near-bed and surface flow division patterns in experimental river bifurcations. Water Resources Research, 50(2), 1506–1530. https://doi.org/10.1002/2013WR014215
  • McLelland, S. J., Ashworth, P. J., Best, J. L., Roden, J., & Klaassen, G. J. (1999). Flow structure and transport of sand-grade suspended sediment around an evolving braid bar, Jamuna River, Bangladesh. Fluvial Sedimentology VI, 28, 43–57. https://doi.org/10.1002/9781444304213.ch4
  • Miori, S., Hardy, R. J., & Lane, S. N. (2012). Topographic forcing of flow partition and flow structures at river bifurcations. Earth Surface Processes and Landforms, 37(6), 666–679. https://doi.org/10.1002/esp.3204
  • Mosley, M. P. (1976). An experimental study of channel confluences. The Journal of Geology, 84(5), 535–562. https://doi.org/10.1086/628230
  • Orfeo, O., Parsons, D. R., Best, J. L., Lane, S. N., Hardy, R. J., Kostaschuk, R., Szupiany, R. N., & Amsler, M. L. (2006). Morphology and flow structures in a large confluence-diffluence: Rio Parana, Argentina. In R. M. L. Ferreira, C. T. L. Alves, G. A. B. Leal, & A. H. Cardoso (Eds.), River Flow 2006 (pp. 1277–1282).
  • Parsons, D. R., Best, J. L., Lane, S. N., Orfeo, O., Hardy, R. J., & Kostaschuk, R. (2007). Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms, 32(1), 155–162. https://doi.org/10.1002/esp.1457
  • Ragno, N., Redolfi, M., & Tubino, M. (2021). Coupled morphodynamics of river bifurcations and confluences. Water Resources Research, 57(1), e2020WR028515. https://doi.org/10.1029/2020WR028515
  • Redolfi, M., Tubino, M., Bertoldi, W., & Brasington, J. (2016). Analysis of reach-scale elevation distribution in braided rivers: Definition of a new morphologic indicator and estimation of mean quantities. Water Resources Research, 52(8), 5951–5970. https://doi.org/10.1002/2015WR017918
  • Redolfi, M., Zolezzi, G., & Tubino, M. (2019). Free and forced morphodynamics of river bifurcations. Earth Surface Processes and Landforms, 44(4), 973–987. https://doi.org/10.1002/esp.4561
  • Rhoads, B. L., & Kenworthy, S. T. (1995). Flow structure at an asymmetrical stream confluence. Geomorphology, 11(4), 273–293. https://doi.org/10.1016/0169-555X(94)00069-4
  • Rhoads, B. L., & Sukhodolov, A. N. (2001). Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities. Water Resources Research, 37(9), 2393–2410. https://doi.org/10.1029/2001WR000316
  • Roy, A. G., & Bergeron, N. (1990). Flow and particle paths at a natural river confluence with coarse bed material. Geomorphology, 3(2), 99–112. https://doi.org/10.1016/0169-555X(90)90039-S
  • Roy, A. G., Roy, R., & Bergeron, N. (1988). Hydraulic geometry and changes in flow velocity at a river confluence with coarse bed material. Earth Surface Processes and Landforms, 13(7), 583–598. https://doi.org/10.1002/esp.3290130704
  • Sambrook Smith, G. H., Ashworth, P. J., Best, J. L., Woodward, J., & Simpson, C. J. (2005). The morphology and facies of sandy braided rivers: Some considerations of scale invariance. In M. D. Blum, S. B. Marriott, & S. F. Leclair (Eds.), Fluvial sedimentology VII. International association of sedimentologists. Special Publication No. 35 (pp. 145–158). Blackwell.
  • Sharifipour, M., Bonakdari, H., Zaji, A. H., & Shamshirband, S. (2015). Numerical investigation of flow field and flowmeter accuracy in open-channel junctions. Engineering Applications of Computational Fluid Mechanics, 9(1), 280–290. https://doi.org/10.1080/19942060.2015.1008963
  • Shukry, A. (1950). Flow around bends in an open flume. Transactions of the American Society of Civil Engineers, 115(1), 751–778. https://doi.org/10.1061/TACEAT.0006426
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Review, 91(3), 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Sukhodolov, A. N., Krick, J., Sukhodolova, T. A., Cheng, Z. Y., Rhoads, B. L., & Constantinescu, G. S. (2017). Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology. Journal of Geophysical Research: Earth Surface, 122(6), 1278–1293. https://doi.org/10.1002/2016JF004126
  • Sukhodolov, A. N., & Sukhodolova, T. A. (2019). Dynamics of flow at concordant gravel bed river confluences: Effects of junction angle and momentum flux ratio. Journal of Geophysical Research: Earth Surface, 124(2), 588–615. https://doi.org/10.1029/2018JF004648
  • Szupiany, R. N., Amsler, M. L., Hernandez, J., Parsons, D. R., Best, J. L., Fornari, E., & Trento, A. (2012). Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river. Water Resources Research, 48(11), W11515. https://doi.org/10.1029/2011WR011677.
  • Thomas, R. E., Parsons, D. R., Sandbach, S. D., Keevil, G. M., Marra, W. A., Hardy, R. J., Best, J. L., Lane, S. N., & Ross, J. A. (2011). An experimental study of discharge partitioning and flow structure at symmetrical bifurcations. Earth Surface Processes and Landforms, 36(15), 2069–2082. https://doi.org/10.1002/esp.2231
  • Thorne, C. R., Zevenbergen, L. W., Pitlick, J. C., Rais, S., Bradley, J. B., & Julien, P. Y. (1985). Direct measurements of secondary currents in a meandering sand-bed river. Nature, 315, 746–747. https://doi.org/10.1038/315746a0.
  • van der Mark, C. F., & Mosselman, E. (2013). Effects of helical flow in one-dimensional modelling of sediment distribution at river bifurcations. Earth Surface Processes and Landforms, 38(5), 502–511. https://doi.org/10.1002/esp.3335
  • Wang, X. G., Yan, Z. M., & Guo, W. D. (2007). Three-dimensional simulation for effects of bed discordance on flow dynamics at Y-shaped open channel confluences. Journal of Hydrodynamics, 19(5), 587–593. https://doi.org/10.1016/S1001-6058(07)60157-7
  • Weber, L. J., Schumate, E. D., & Mawer, N. (2001). Experiments on flow at a 90° open-channel junction. Journal of Hydraulic Engineering, 127(5), 340–350. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(340)
  • Xie, Q. C., Yang, J., & Lundström, T. S. (2020). Flow and sediment behaviours and morpho-dynamics of a diffluence−Confluence unit. River Research and Applications, 36(8), 1515–1528. https://doi.org/10.1002/rra.3697
  • Xu, L., Yuan, S. Y., Tang, H. W., Qiu, J. J., Whittaker, C., & Gualtieri, C. (2022). Mixing dynamics at the large confluence between the Yangtze River and Poyang Lake. Water Resources Research, 58(11), e2022WR032195. https://doi.org/10.1029/2022WR032195
  • Yuan, S. Y., Xu, L., Tang, H. W., Xiao, Y., & Gualtieri, C. (2022). The dynamics of river confluences and their effects on the ecology of aquatic environment: A review. Journal of Hydrodynamics, 34(1), 1–14. https://doi.org/10.1007/s42241-022-0001-z
  • Yuan, S. Y., Yan, G. H., Tang, H. W., Xiao, Y., Rahimi, H., Aye, M. N., & Gualtieri, C. (2023). Effects of tributary floodplain on confluence hydrodynamics. Journal of Hydraulic Research, 61(4), 552–572. https://doi.org/10.1080/00221686.2023.2231413