94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A reinforcement learning framework for improving parking decisions in last-mile delivery

, , &
Article: 2337216 | Received 28 Mar 2023, Accepted 26 Mar 2024, Published online: 08 Apr 2024
 

Abstract

This study leverages simulation-optimisation with a Reinforcement Learning (RL) model to analyse the routing behaviour of delivery vehicles (DVs). We conceptualise the system as a stochastic k-armed bandit problem, representing a sequential interaction between a learner (the DV) and its surrounding environment. Each DV is assigned a random number of customers and an initial delivery route. If a loading zone is unavailable, the RL model is used to select a delivery strategy, thereby modifying its route accordingly. The penalty is gauged by the additional trucking and walking time incurred compared to the originally planned route. Our methodology is tested on a simulated network featuring realistic traffic conditions and a fleet of DVs employing four distinct lastmile delivery strategies. The results of our numerical experiments underscore the advantages of providing DVs with an RL-based decision support system for en-route decision-making, yielding benefits to the overall efficiency of the transport network.

Highlights

  • Combining simulation and optimisation algorithms with reinforcement learning

  • Model DVs en-route parking decisions with a k-armed bandit algorithm

  • Evaluating the impacts of delivery strategies on traffic congestion and in last-mile delivery efficiency

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.