214
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Mesozoic tectono-magmatic evolution of the Tanlu Fault zone and its relationship with the destruction of the North China Craton

, , , &
Pages 2001-2030 | Received 11 Jan 2023, Accepted 06 Oct 2023, Published online: 17 Oct 2023
 

ABSTRACT

The lithosphere beneath the eastern part of the North China Craton (NCC) is widely recognized as having undergone extensive thinning and destruction since the Mesozoic. Although most models propose that the destruction was related to the Paleo-Pacific subduction, the timing and mechanism of the destruction remains controversial. The Tanlu Fault is the largest deep strike-slip fault zone in eastern China. It is an ideal object to study the destruction of the NCC and the subduction history of the Paleo-Pacific. In this review, we compile the ages and geochemical data of the Mesozoic magmatic rocks along the Tanlu Fault zone, in combination with evidence related to the tectonic evolution of the Tanlu Fault during this time. We further discuss the relationship between subduction of the Paleo-Pacific and the thinning and destruction processes affecting the NCC lithosphere. In the Late Triassic period, adakitic rocks, A-type granites, and mafic rocks generated from depleted asthenosphere were distributed in Liaoning and Shandong provinces along the Tanlu Fault. These magmas were related to an extensional environment caused by exhumation of the Yangtze block after subduction. The magmatic characteristics indicate that the lithospheric mantle began to change from cold and refractory to a hot and active, suggesting that the NCC began to undergo cratonic destruction at this time. The magmatic lull ranging from 200–185 Ma represents the transition for the Tanlu Fault zone tectonic domain from Paleo-Asian Ocean subduction in the north to the Paleo-Pacific subduction in the east. During the Jurassic, the NCC was also affected by subduction and compression of the Mongol – Okhotsk domain in the north and the influence of the Tethys tectonic domain in the south. Under this multi-directional compression, the crust thickened and the subducted slabs were dehydrated and melted, triggering partial melting of the overlying lithospheric mantle, providing a heat source for partial melting of the crust. At the end of the Jurassic, due to the steepening of the subduction angle of the Paleo-Pacific plate and the roll-back of the plate at that time, another magmatic lull (155–145 Ma) occurred in the Tanlu Fault area. In the early Early Cretaceous, due to a change of the Paleo-Pacific subduction direction (from NW to NNW), a large-scale strike-slip movement took place along the Tanlu Fault zone, and the study area began to experience extensive magmatism. At ca. 125 Ma, A-type granites were formed, representing the large-scale extension. At ca. 122 Ma, OIB-like mafic rocks began to intrude, which indicate that the geochemical properties of the lithospheric mantle of the NCC underwent a fundamental transformation at this time. Hence, the lithospheric mantle of the NCC was replaced by new lithospheric mantle. Slab subduction certainly weakened the NCC. However, the studies of mantle peridotite xenoliths in Cenozoic basalts indicate that the large fault zone (Tanlu Fault) was the priority area for lithospheric mantle transformation and replacement. Taking the time and space distribution characteristics of the NCC destruction into consideration, thermochemical erosion was an indispensable destruction model. According to magmatic and structural evidence, the destruction of the NCC was indeed related to the Paleo-Pacific movement. Besides, it should be noted that the Tanlu Fault was also a factor that cannot be ignored.

Acknowledgments

The first author would like to thank Professor Simon Wilde for his patient revision to improve the early draft. We really appreciate Professor Stern for his suggestions and patience. We are very grateful to the two reviewers (Professor Wen-Liang Xu and Professor Ross N. Mitchell) for their comments and suggestions, which have greatly improved the manuscript. We thank members of the Beijing SHRIMP Center for their help with SHRIMP analysis and zircon CL imaging.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/00206814.2023.2269221

Additional information

Funding

This study was financially supported by Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Shandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization (KFKT202101), and China National Space Administration (Grant no. D020205).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.