Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 15, 2003 - Issue 7
39
Views
30
CrossRef citations to date
0
Altmetric
Research Article

The Fate of Antioxidant Enzymes in Bronchoalveolar Lavage Fluid Over 7 Days in Mice with Acute Lung Injury

, , &
Pages 675-685 | Published online: 01 Oct 2008
 

Abstract

Characterization of lung injury is important if timely therapeutic intervention is to be used properly and successfully. In this study, lung injury was defined as the progressive formation of pulmonary edema. Our model gas was phosgene, a pulmonary edemagenic compound. Phosgene, widely used in industry, can produce life-threatening pulmonary edema within hours of exposure. Four groups of 40 CD-1 male mice were exposed whole-body to either air or a concentration × time (c × t) amount of 32-42 mg/m 3 (8-11 ppm) phosgene for 20 min (640-840 mg·min/m 3) . Groups of air- or phosgene-exposed mice were euthanized 1, 4, 8, 12, 24, 48, or 72 h or 7 days postexposure. The trachea was excised, and 800 µl saline was instilled into the lungs and washed back and forth 5 times to collect bronchoalveolar lavage fluid (BALF). The antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), total glutathione (GSH), and protein were determined at each time point. Phosgene exposure significantly enhanced both GPx and GR in phosgene-exposed mice compared with air-exposed mice from 4 to 72 h, p ≤ .01 and p ≤ .005, respectively. BALF GSH was also significantly increased, p ≤ .01, from 4 to 24 h after exposure, in comparison with air-exposed. BALF protein, an indicator of air/blood barrier integrity, was significantly higher than in air-exposed mice 4 h to 7 days after exposure. In contrast, BALF SOD was reduced by phosgene exposure from 4 to 24 h, p ≤ .01, versus air-exposed mice. Except for protein, all parameters returned to control levels by 7 days postexposure. These data indicate that the lung has the capacity to repair itself within 24-48 h after exposure by reestablishing a functional GSH redox system despite increased protein leakage. SOD reduction during increased leakage may indicate that barrier integrity is affected by superoxide anion production.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.