Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 19, 2007 - Issue sup1
371
Views
58
CrossRef citations to date
0
Altmetric
Research Article

Cardiovascular Effects of Fine Particulate Matter Components in Highway Patrol Officers

Pages 99-105 | Received 31 May 2006, Accepted 05 Jan 2007, Published online: 20 Oct 2008
 

Abstract

Exposure to fine particulate matter (PM2.5) from traffic affects heart-rate variability, thrombosis, and inflammation. This reanalysis investigated components potentially contributing to such effects in nonsmoking healthy male North Carolina highway patrol troopers. Nine officers were studied four times during their late shift. PM2.5, its elemental composition, and gaseous copollutants were measured inside patrol cars. Components correlated to PM2.5 were compared to cardiac and blood parameters measured 10 and 15 h, respectively, after each shift. Mixed effects models with control for PM2.5 were used. Components that were associated with health endpoints independently from PM2.5 were calcium (increased uric acid and von Willebrand Factor [vWF], decreased protein C), chromium (increased white blood cell count and interleukin 6), aldehydes (increased vWF, mean cycle length of normal R-R intervals [MCL], and heart-rate variability parameter pNN50), copper (increased blood urea nitrogen and MCL; decreased plasminogen activator inhibitor 1), and sulfur (increased ventricular ectopic beats). Control for gaseous copollutants had little effect on the effect estimates. The changes observed are consistent with effects reported earlier for PM2.5 from speed-change traffic (characterized by copper, sulfur, and aldehydes) and from soil (with calcium). The associations of chromium with inflammation markers were not seen before for traffic particles, but they are consistent with the toxicological literature although at low concentrations. Copper, sulfur, aldehydes, calcium, and chromium or compounds containing these elements seem to directly contribute to the inflammatory, coagulatory, and cardiac response to PM2.5 from traffic in the investigated patrol troopers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.