Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 29, 2017 - Issue 2
666
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Effects of inhaled aerosolized carfentanil on real-time physiological responses in mice: a preliminary evaluation of naloxone

, , , , &
Pages 65-74 | Received 23 Nov 2016, Accepted 09 Jan 2017, Published online: 03 Mar 2017
 

Abstract

This study examined the real-time exposure–response effects of aerosolized carfentanil (CRF) on opioid-induced toxicity, respiratory dynamics and cardiac function in mice. Unrestrained, conscious male CD-1 mice (25–30 g) were exposed to 0.4 or 4.0 mg/m3 of aerosolized CRF for 15 min (Ct = 6 or 60 mg min/m3) in a whole-body plethysmograph chamber. Minute volume (MV), core body temperature (Tc), mean arterial blood pressure (MAP) and heart rate (HR) were evaluated in animals exposed to CRF or sterile H2O. Loss of consciousness and Straub tail were observed in before 1 min following initiation of exposure to 6 or 60 mg min/m3 of CRF. Clinical signs of opioid-induced toxicity were observed in a dose-dependent manner. Exposure to 6 or 60 mg min/m3 of CRF resulted in significant decrease in MV as compared to the controls. MAP, HR and Tc decreased 24 h in animals exposed to either 6 or 60 mg min/m3 of CRF as compared to the controls. Post-exposure administration of naloxone (NX, 0.05 mg/kg, i.m.) did not increase the MV of animals exposed to CRF to control levels within 24 h, but decreased clinical signs of opioid-induced toxicity and the duration of respiratory depression. This is the first study to evaluate real-time respiratory dynamics and cardiac function during exposure and up to 24 h post-exposure to CRF. The evaluation of toxicological signs and respiratory dynamics following exposure to CRF will be useful in the development of therapeutic strategies to counteract the ongoing threat of abuse and overuse of opioids and their synthetic variants.

Acknowledgements

The views expressed herein are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the US Government. This work was supported by the Defense Threat Reduction Agency.

Disclosure statement

The authors have nothing to disclose.

Additional information

Funding

This work was supported by the Defense Threat Reduction Agency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.