79
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Increased trypsin resilience in aqueous-acetonitrile environment when immobilized on glyoxyl-agarose may improve its applicability

, & ORCID Icon
Pages 345-352 | Received 16 Oct 2022, Accepted 06 Apr 2023, Published online: 19 Apr 2023
 

Abstract

Although trypsin is a protease naturally applicable in many processes, it is still possible to increase its efficiency and forms of use. Processes that increase their resilience to different conditions in the reaction medium can expand and/or refine their range of applications. Its performance in the presence of organic solvents, such as acetonitrile (ACN), has been indicated as a promising way to increase the efficiency of digestion processes, such as in sample treatment for MALDI-MS peptide mapping. The maintenance of the activity of trypsin immobilized on glyoxyl-agarose was herein demonstrated in different temperature and ACN ranges. Compared to the soluble, the immobilized enzyme was able to remain active above 50% ACN, where the soluble trypsin showed no activity. Although low, it was still possible to detect about 7% activity at 70% ACN when immobilized form was used. With 7.5% of ACN, the soluble enzyme has already shown loss of activity. The same only occurred with immobilized trypsin at 20% or more. Although the immobilized enzyme may have lower specific activity compared to the soluble one, as confirmed by the determined kinetic parameters, its possibility of reuse was confirmed, with no loss of activity for 5 cycles at 0% and 5% ACN. Added to this is the simplicity that the reaction can be interrupted, through the removal of the enzyme from the medium. What could prevent its own protein chain from contaminating the final product. With these characteristics added, trypsin in its immobilized form presents itself as a promising biocatalyst.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.