113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of TiC on the Microstructure, Mechanical Properties, and Wear Behavior of E690 Steel Prepared by Laser Cladding

, , , , , , , , & show all
Pages 1153-1168 | Received 23 Jun 2023, Accepted 23 Oct 2023, Published online: 15 Nov 2023
 

Abstract

For this study, E690 steel claddings with different contents of TiC were prepared by laser cladding for revealing effects of TiC on microstructure, mechanical properties, and wear behavior of the cladded steel. The microstructure and mechanical properties of the cladded alloys were observed and measured. The wear resistance of the cladded alloys was tested using a ball-on-disc tribometer. The experimental results showed that TiC refined the grain of the cladded alloy obviously. However, excessive TiC could lead to the network-like distribution of submicro TiC particles in the claddings. The microhardness of the cladded alloy with 1% TiC increased to 418.5 ± 10.7 HV500, and yield strength and ultimate tensile strength (UTS) increased by 11% and 7% compared with those of the cladded alloy without TiC. Excessive TiC decreased the tensile properties to an obvious degree. The addition of TiC improved the wear resistance of the cladded alloy significantly. When normal loads were 5 N and 10 N, the cladded alloy with 5% TiC exhibited high wear resistance, and the wear rates decreased by 59% and 78% compared with those of the cladded alloy without TiC. However, when normal load was 20 N, the cladded alloy with 1% TiC possessed superior wear resistance, and its wear rate decreased by 81% compared with that of the cladded alloy without TiC. The main wear mechanism of the cladded alloys was abrasion wear when normal load was low, but serious plastic deformation played a role in the wear process when normal load was high.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors thank the Natural Science Foundation of Guangdong Province, China (grant no. 2021A1515012133), Offshore Wind Power Joint Funding Program of Basic and Applied Basic Research Foundation of Guangdong Province, China (grant no. 2022B1515250004), and Basic and Applied Basic Research Foundation of Guangdong Province, China (grant no. 2022A1515240004) for supporting this research project.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.