Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
76
Views
0
CrossRef citations to date
0
Altmetric
Articles

A data-driven framework for forecasting transient vehicle thermal performances

, & ORCID Icon
Pages 485-499 | Received 01 May 2023, Accepted 22 Jul 2023, Published online: 02 Aug 2023
 

Abstract

Transient vehicle dynamics are deeply affected by the spatial distribution of tire temperature, heat generation, and heat dissipation capacity. However, the tire testing process involves numerous parameters, adding the complexity to monitoring the tire’s thermal properties variation. To address this issue, this paper proposes a data-driven framework that combines the well-known Magic Formula with scaling factors and a long- and short-term memory (LSTM) neural network. The framework forecasts tire thermal properties and functionality under given conditions by learning from time-series data on tire operating conditions and mechanical characteristics. It predicts future spatially varying thermal properties of the tire, including temperatures, heat generation, and heat dissipation. This is achieved with a high degree of forecasting ability quantified by train size/test size ratios equaling 22 and 38% with an impressive Relative Root Mean Square Error (RRMSE) around 1−2%. Here, this framework is applied to quantify the impacts of various operating conditions, including vertical load, slip angle, and vehicle speed, on heat transfer for three crucial radial positions on the tire. Our results show that the vertical load is the primary influencing parameter among all operating conditions. The knowledge about transient tire dynamics will be advantageous to their performance optimization.

Acknowledgements

C.Z. is grateful for the financial support from the Hyundai Motor Company and the UCI Mechanical and Aerospace Engineering Department Graduate Fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.