730
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Follistatin-like 1 protects endothelial function in the spontaneously hypertensive rat by inhibition of endoplasmic reticulum stress through AMPK-dependent mechanism

, , , , , & show all
Article: 2277654 | Received 17 Sep 2023, Accepted 26 Oct 2023, Published online: 14 Nov 2023
 

ABSTRACT

Objective

Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs).

Methods

Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 μg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography.

Results

We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor).

Conclusions

These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Funding

The work was supported in part by grants from the Key Research and Development Project of Jiangxi Provincial Science and Technology Department (20192BBGL70026), National Natural Science Foundation of China (81960089) and Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX1031).