112
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Presentation of thermodynamic and dynamic modules methods to investigate the effect of nano hydrated lime on moisture damage of stone matrix asphalt

, ORCID Icon, , &
Pages 141-150 | Received 13 Jul 2021, Accepted 04 Jan 2022, Published online: 06 Jun 2022
 

ABSTRACT

Stone matrix asphalt (SMA) mixtures are the most resistant type of asphalt mixtures today in which the aggregate skeleton bears the bulk load. In this study, the effect of nano hydrated lime (NHL) on the moisture sensitivity of SMA mixtures was investigated. To examine the effect of NHL, the surface free energy (SFE) method and the dynamic modulus (DM) test were applied under wet and dry conditions on mixtures constructed with limestone and granite aggregates. The SFE results indicated that the granite aggregates had a greater polar component and limestone aggregates had a higher non-polar component which shows their higher moisture resistance. The adhesion free energy (AFE) results showed that the adhesion of base bitumen and limestone aggregate was higher, and using NHL improved the AFE values. The results of DM tests indicated that as the load cycles raised, the wet to dry DM ratio reduced and using NHL increased this ratio. The reduction slope of the DM ratio in samples constructed with granite aggregates showed a faster trend compared to limestone aggregates, and using NHL improved the resistance of SMA mixtures constructed with granite aggregates to moisture more than limestone aggregates.

Disclosure statement

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.