90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Glomus versiforme and intercropping with Sphagneticola calendulacea decrease Cd accumulation in maize

, , &
 

Abstract

Little information is available on the influence of the compound use of intercropping (IN) and arbuscular mycorrhizal fungus (AMF) on Cd accumulation and the expression of Cd transporter genes in two intercropped plants. A pot experiment was conducted to study the influences of IN and AMF-Glomus versiforme on growth and Cd uptake of two intercropped plants-maize and Cd hyperaccumulator Sphagneticola calendulacea, and the expression of Cd transporter genes in maize in Cd-polluted soils. IN, AMF and combined treatments of IN and AMF (IN + AMF) obviously improved biomass, photosynthesis and total antioxidant capacities of two plants. Moreover, single and compound treatments of IN and AMF evidently reduced Cd contents in maize, and the greatest decreases appeared in the compound treatment. However, Cd contents of S. calendulacea in IN, AMF and IN + AMF groups were notably improved. Furthermore, the single and compound treatments of IN and AMF significantly downregulated the expression levels of Nramp1, HMA1, ABCC1 and ABCC10 in roots and leaves, and the largest decreases were observed in the combined treatment. Our work first revealed that the combined use of IN and AMF appeared to have a synergistic effect on decreasing Cd content by downregulating the expression of Cd transporter genes in maize.

Acknowledgments

We thank all lab members for their help with lab work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The study was supported by the Guangdong Natural Science Foundation of China (2019A1515010898) and the Guangzhou Science and Technology Program of China (202002030109).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.