84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CAMP: a hierarchical cache architecture for multi-core mixed criticality processors

, , , , &
Pages 317-352 | Received 22 Jul 2023, Accepted 01 Dec 2023, Published online: 19 Dec 2023
 

Abstract

CAMP proposes a hierarchical cache subsystem for multi-core mixed criticality processors, focusing on ensuring worst-case execution time (WCET) predictability in automotive applications. It incorporates criticality-aware locked L1 and L2 caches, reconfigurable at mode change intervals, along with criticality-aware last level cache partitioning. Evaluation using CACOSIM, Moola Multicore simulator, and CACTI simulation tools confirms the suitability of CAMP for keeping high-criticality jobs within timing budgets. A practical case study involving an automotive wake-up controller using the sniper v7.2 architecture simulator further validates its usability in real-world mixed criticality applications. CAMP presents a promising cache architecture for optimized multi-core mixed criticality systems.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.