2,981
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Understanding the roles of intrinsic disorder in subunits of hemoglobin and the disease process of sickle cell anemia

, &
Article: e1248273 | Received 14 Sep 2016, Accepted 10 Oct 2016, Published online: 21 Dec 2016
 

ABSTRACT

One of the common genetic disorders is sickle cell anemia, in which 2 recessive alleles must meet to allow for destruction and alteration in the morphology of red blood cells. This usually leads to loss of proper binding of oxygen to hemoglobin and curved, sickle-shaped erythrocytes. The mutation causing this disease occurs in the 6th codon of the HBB gene encoding the hemoglobin subunit β (β-globin), a protein, serving as an integral part of the adult hemoglobin A (HbA), which is a heterotetramer of 2 α chains and 2 β chains that is responsible for binding to the oxygen in the blood. This mutation changes a charged glutamic acid to a hydrophobic valine residue and disrupts the tertiary structure and stability of the hemoglobin molecule. Since in the field of protein intrinsic disorder, charged and polar residues are typically considered as disorder promoting, in opposite to the order-promoting non-polar hydrophobic residues, in this study we attempted to answer a question if intrinsic disorder might have a role in the pathogenesis of sickle cell anemia. To this end, several disorder predictors were utilized to evaluate the presence of intrinsically disordered regions in all subunits of human hemoglobin: α, β, δ, ϵ, ζ, γ1, and γ2. Then, structural analysis was completed by using the SWISS-MODEL Repository to visualize the outputs of the disorder predictors. Finally, Uniprot STRING and D2P2 were used to determine biochemical interactome and protein partners for each hemoglobin subunit along with analyzing their posttranslational modifications. All these properties were used to determine any differences between the 6 different types of subunits of hemoglobin and to correlate the mutation leading to sickle cell anemia with intrinsic disorder propensity.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.