657
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Regulation of CYP1A1 by heavy metals and consequences for drug metabolism

, & , PhD
Pages 501-521 | Published online: 06 May 2009
 

Abstract

Cytochrome P450 1A1 (CYP1A1) is a hepatic and extrahepatic enzyme that is regulated by the aryl hydrocarbon receptor signaling pathway. With the growing human exposure to heavy metals, emerging evidence suggests that heavy metals exposure alter CYP1A1 enzyme activity. Heavy metals regulate CYP1A1 at different levels of its aryl hydrocarbon receptor signaling pathway in a metal- and species-dependent manner. The importance of CYP1A1 emerges from the fact that it has been always associated with the metabolism of pro-carcinogenic compounds to highly carcinogenic metabolites. However, recently CYP1A1 has gained status along with other cytochrome P450 enzymes in the metabolism of drugs and mediating drug–drug interactions. In addition, CYP1A1 has become a therapeutic tool for the bioactivation of prodrugs, particularly cytotoxic agents. In this review, we shed light on the effect of seven heavy metals, namely arsenic, mercury, lead, cadmium, chromium, copper and vanadium, on CYP1A1 and the consequences on drug metabolism.

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN 250139-07 to Ayman OS. Anwar Anwar-Mohamed is the recipient of Mike Wolowyk Graduate Scholarship award.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.