Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 27, 2015 - Issue 2
453
Views
34
CrossRef citations to date
0
Altmetric
Research Article

Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia and pulmonary inflammation in heart failure-prone rats

, , , , , , , & show all
Pages 100-112 | Received 10 Sep 2014, Accepted 24 Nov 2014, Published online: 20 Jan 2015
 

Abstract

Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiological events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 µg/m3, 4 h) in ISO-pretreated (35 days × 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic and arrhythmogenic effects of acute PM2.5 inhalation.

Acknowledgements

The authors thank Justin B. Callaway of UNC-Chapel Hill for help with animal handling and surgical procedures, and Dr. Barbara Buckley, Dr. William Polk and Dr. Ian Gilmour of the U.S. EPA for their expert reviews of this manuscript.

Declaration of interest

The authors have no conflicts of interest to disclose. This paper has been reviewed and approved for release by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the U.S. EPA, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This research was supported by U.S. EPA / UNC Toxicology Training Agreement (CR83515201-0), EPA-NHEERL / UNC-DESE Cooperative Training in Environmental Sciences & Research (CR83323601), and the NIH (HL007118).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.