201
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Dalbergia sissoo phytochemicals as EGFR inhibitors: an in vitro and in silico approach

, , , ORCID Icon, ORCID Icon, , & show all
Pages 5415-5427 | Received 29 Mar 2023, Accepted 11 Jun 2023, Published online: 02 Jul 2023
 

Abstract

The safest and most effective sources of medications are natural and traditional medicines derived from plants and herbs. In Western India, various parts of the Dalbergia sissoo plant, which belongs to the Fabaceae family, have been traditionally used to treat different types of cancer by the local tribes. However, this claim has not been scientifically proven yet. Thus, the purpose of this study was to examine the antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) and anticancer effects of different plant extracts from Dalbergia sissoo bark, root, and branch on six different cancer cell lines (K562, PC3, A431, A549, NCIH 460, and HEK 293 T) using in vitro cell viability and cytotoxicity assays. The study also involved in silico docking, MD simulation, and ADME studies of previously reported bioactive compounds from the same parts of the plant to confirm their bioactivity. The DPPH radical scavenging experiment findings showed that the methanol: water extract of the bark had a more significant antioxidant activity IC50 (45.63 ± 1.24 mg/mL). Furthermore, the extract prevented the growth of the A431, A549, and NCIH 460 cancer cell lines with the lowest IC50 values of 15.37, 29.09, and 17.02 g/mL, respectively, demonstrating remarkable anticancer potential. Molecular docking and dynamic simulation studies revealed that Prunetin, Tectorigenin, and Prunetin 4'-O-Galactoside show efficient binding to the EGFR binding domain. This study suggests that tested hits may have antioxidant and anticancer agents and can be considered for future applications in the pharma sector.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors thank the Department of Chemistry, SV National Institute of Technology, India, and Natural Product and Green Chemistry Division, CSIR Central Salt & Marine Chemicals Research Institute, India, for providing all the facilities for the research work. CSIR-CIMAP, India, for providing facilities for anticancer evaluation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.