162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Advancements in Polymer Friction and Wear: A Scratch-Modeling Approach

ORCID Icon &
Pages 1-14 | Received 12 May 2023, Accepted 03 Nov 2023, Published online: 27 Nov 2023
 

Abstract

Due to its many applications, including assessing strength, fracture toughness, and so on, the scratch method has attracted much attention in the research community. Finding the tribological characteristics of polymers, such as friction and wear, proved difficult for scratch approaches. This study tested a constant loading scratch method with a Rockwell indenter on the polymeric surface to develop an accessible wear and friction calculation model. Scratch load, speed, and passes, three primary factors, are considered to observe the polymers' response, particularly in terms of width, penetration depth, residual depth, and percentage of recovery. Considering all these scratch parameters, the experiments were conducted on five polymers: polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), polypropylene (PP), high-density polyethylene (HDPE), and polymethylmethacrylate (PMMA). The scratch characteristics are considered to calculate the friction coefficient and wear throughout the scratching process. Increased groove width, penetration depth, and residual depth and a decrease in recovery percentage are the effects of the number of scratch passes. The strain hardening caused by the multiple movements of the indenter on the same grooves causes a behavior change. With an increase in the scratch pass, the coefficient of friction decreases and stabilizes, and the volumetric wear increases, suggesting that more scratch passes will cause more material loss. This study derived two distinct models by applying the least-square curve fitting technique to evaluate friction and material wear characteristics. This model demonstrates a high degree of compatibility with the specific characteristics of polymeric materials and exhibits a significantly low margin of error.

Acknowledgements

The authors gratefully acknowledge the sincere cooperation of the members of the Tribology Laboratory of the Indian Institute of Technology, Kharagpur.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Data availability statement

Data will be made available on request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.