163
Views
2
CrossRef citations to date
0
Altmetric
Articles

A combustion mechanism reduction method based on entropy production analysis in fuel auto-ignition and laminar flames

, &
Pages 262-281 | Received 29 May 2023, Accepted 24 Oct 2023, Published online: 02 Nov 2023
 

Abstract

This study provides a chemical mechanism reduction strategy based on entropy production analyses in both auto-ignition and laminar flames, which enhances the predictive accuracy for laminar burning velocities. In addition to chemical reactions, other irreversible sources causing entropy generation, such as mass diffusion and heat conduction, are considered in the modified approach. Specifically, initial skeletal mechanisms are first generated based on important reactions that contribute to entropy production in auto-ignition processes. Mechanism patches are then constructed to include important species and reactions, which contribute to entropy production from mass diffusion and heat conduction in laminar premixed flames beyond the pre-defined thresholds, respectively. Finally, the initial skeletal mechanisms and mechanism patches are combined to establish the final skeletal mechanisms. In this way, two final skeletal mechanisms for n-dodecane, consisting of 162 species and 2276 reactions, and 160 species and 1916 reactions, respectively, are developed from the detailed POLIMI mechanism with 451 species and 17,848 reactions. The two final skeletal mechanisms are proven to accurately predict laminar burning velocities and entropy production in n-dodecane flames with insignificant variations in the simulation results compared to the detailed mechanism, while their accuracy in predicting ignition delay times relies on the initial skeletal mechanisms. Specifically, the reduced mechanism with 160 species and 1916 reactions exhibits less satisfactory performance in predicting ignition delay compared to that with 162 species and 2276 reactions, indicating that a lower threshold is required to generate the initial skeletal mechanism through entropy production analysis of homogeneous auto-ignition processes. Additionally, compared with the reduced mechanisms with similar sizes obtained with other mechanism reduction strategies, the two final skeletal mechanisms accurately capture the characteristics of laminar burning velocities and ignition delay times, with similar calculation time required.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is supported by the National Natural Science Foundation of China [grant numbers 52106261 and 52022058], the Postdoctoral Research Foundation of China [grant numbers 2022M712042 and 2022T150403].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.