1,003
Views
45
CrossRef citations to date
0
Altmetric
Articles

Robust optimization of risk-aware, resilient and sustainable closed-loop supply chain network design with Lagrange relaxation and fix-and-optimize

, , , &
Pages 705-745 | Received 13 Jun 2021, Accepted 08 Dec 2021, Published online: 21 Dec 2021
 

ABSTRACT

This study explores a Robust, Risk-aware, Resilient, and Sustainable Closed-Loop Supply Chain Network Design (3RSCLSCND) to tackle demand fluctuation like COVID-19 pandemic. A two-stage robust stochastic multiobjective programming model serves to express the proposed problems in formulae. The objective functions include minimising costs, CO2 emissions, energy consumption, and maximising employment by applying Conditional Value at Risk (CVaR) to achieve reliability through risk reduction. The Entropic Value at Risk (EVaR) and Minimax method are used to compare with the proposed model. We utilise the Lp-Metric method to solve the multiobjective problem. Since this model is complex, the Lagrange relaxation and Fix-and-Optimise algorithm are applied to find lower and upper bounds in large-scale, respectively. The results confirm the superior power of the model offered in estimating costs, energy consumption, environmental pollution, and employment level. This model and algorithms are applicable for other CLSC problems.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 235.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.