111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation ability and selected genetic transcription in Hydrocotyle umbellata-under cadmium stress

, , , , , , , & show all
Pages 1144-1153 | Published online: 24 Dec 2023
 

Abstract

Cadmium (Cd) is the most toxic element which may cause serious consequences to microbial communities, animals, and plants. The use of green technologies like phytoremediation employs plants with high biomass and metal tolerance to extract toxic metals from their rooting zones. In the present work, Hydrocotyle umbellata was exposed to five Cd concentrations (2, 4, 6, 8, and 10 µmol) in triplicates to judge its phytoextraction ability. Effects of metal exposure on chlorophyll (Chl), bio-concentration factor (BCF), translocation factor (TF), and electrolyte leakage (EL) were analyzed after 10 days of treatment. Metal-responding genes were also observed through transcriptomic analysis. Roots were the primary organs for cadmium accumulation followed by stolon and leaves. There was an increase in EL. Plants showed various symptoms under increasing metal stress namely, chlorosis, browning of the leaf margins, burn-like areas on the leaves, and stunted growth, suggesting a positive relationship between EL, and programmed cell death (PCD). Metal-responsive genes, including glutathione, expansin, and cystatin were equally expressed. The phytoextraction capacity and adaptability of H. umbellata L. against Cd metal stress was also demonstrated by BCF more than 1 and TF less than 1.

NOVELTY STATEMENT

The results of the current study demonstrated that Hydrocotyle umbellata is a good choice for environmental cleanup in areas with mild Cd contamination. According to TF and BCF, the plant demonstrated a considerable uptake of Cd. Additionally, H. umbellata’s eligibility as a phytoremediation agent for Cd was supported by the transcription of numerous metal-responsive genes, including glutathione, expansin, cystatin, and other genes associated with growth.

Acknowledgments

The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP2024R134), King Saud University, Riyadh, Saudi Arabia.

Disclosure statement

Authors do not have any conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.