897
Views
117
CrossRef citations to date
0
Altmetric
Research Article

Bacterial Insecticidal Toxins

, &
Pages 33-54 | Published online: 19 Oct 2008
 

Abstract

Over the years it has been important for humans to control the populations of harmful insects and insecticides have been used for this purpose in agricultural and horticultural sectors. Synthetic insecticides, owing to their various side effects, have been widely replaced by biological insecticides. In this review we attempt to describe three bacterial species that are known to produce insecticidal toxins of tremendous biotechnological, agricultural, and economic importance. Bacillus thuringiensis (BT) accounts for 90% of the bioinsecticide market and it produces insecticidal toxins referred to as delta endotoxins. The other two bacteria belong to the genera Photorhabdus and Xenorhabdus, which are symbiotically associated with entomopathogenic nematodes of the families Heterorhabditidae and Steinernematidae respectively. Whereas, Xenorhabdus and Photorhabdus exist in a mutualistic association with the entomopathogenic nematodes, BT act alone. BT formulations are widely used in the field against insects; however, over the years there has been a gradual development of insect resistance against BT toxins. No resistance against Xenorhabdus or Photorhabdus has been reported to date. More recently BT transgenic crops have been prepared; however, there are growing concerns about the safety of these genetically modified crops. Nematodal formulations are also used in the field to curb harmful insect populations. Resistance development to entomopathogenic nematodes is unlikely due to the physical macroscopic nature of infection. Xenorhabdus and Photorhabdus transgenes have not yet been prepared; but are predicted to be available in the near future. In this review we start with an overview of the synthetic insecticides and then discuss Bacillus thuringiensis, Xenorhabdus nematophilus, and Photorhabdus luminescens in greater detail.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 783.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.