0
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Palaeoproterozoic magnesite-stromatolite-dolostone-'red bed' association, Russian Karelia: Palaeoenvironmental constraints on the 2.0 Ga-positive carbon isotope shift

Pages 163-186 | Published online: 05 Nov 2010
 

The ca. 2000 Ma Tulomozerskaya Formation, Russian Karelia, is composed of an 800 m-thick magnesite-stromatolite-dolostone-'red bed' succession with the most 13 C-rich dolostones (up to +18 V-PDB) that have ever been reported. Terrigenous 'red beds' are developed throughout the sequence and represent three main depositional settings: (1) a braided fluvial system over a lower energy, river-dominated coastal plain, (2) a low-energy, barred lagoon or bight, and (3) a non-marine, playa lake. A significant component of the sequence consists of biostromal and biohermal columnar stromatolites accreted in shallow-water, low-energy, intertidal zones, barred evaporitic lagoons and peritidal evaporitic environments. Only a small portion of stromatolites might have been accreted in relatively 'open' marine environments. The red, flat-laminated, dolomitic and magnesite stromatolites formed in evaporative ephemeral ponds, coastal sabkhas and playa lakes. Tepees, mudcracks, pseudomorphs after calcium sulphate, halite casts, and abundant 'red beds' in the sequence suggest that (1) terrestrial environments dominated over aqueous, and (2) partial or total decoupling took place between the stromatolite-dominated depositional systems and the bordering sea. The greatest enrichment in 13C occurs in the playa magnesite (up to +17.2) and in the laminated dolomitic stromatolites accreted in ephemeral ponds (up to +16.8), whereas the dolostones from more open environments are less rich in 13 C (+5.6 to +10.7). The isotopic shift (ca. 5) induced by global factors (i.e. accelerated accumulation of organic material in an external basin) was augmented by that driven by a series of local factors (restriction, evaporation, biological photosynthesis). The latter enhanced a global 13 C value due to an isotopic disequilibrium between atmospheric CO 2 and dissolved inorganic carbon in the local aquatic reservoirs precipitating the carbonate minerals. The interplay between global and local factors should be taken into account when interpreting the Palaeoproterozoic carbon isotope excursion and its implications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.