266
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Local derivations of conformal Galilei algebra

&
Pages 2489-2508 | Received 28 Apr 2023, Accepted 27 Dec 2023, Published online: 10 Jan 2024

Abstract

The present paper is devoted to study local derivations on the conformal Galilei algebra. We prove that every local derivation on the conformal Galilei algebra is a derivation.

2020 Mathematics Subject Classification:

1 Introduction

Let A be an algebra (not necessary associative). Recall that a linear mapping D:AA is said to be a derivation, if D(xy)=D(x)y+xD(y) for all x,yA.A linear mapping Δ is said to be a local derivation, if for every xA there exists a derivation Dx on A (depending on x) such that Δ(x)=Dx(x).

This notion was introduced and investigated independently by R.V. Kadison [Citation17] and D.R. Larson and A.R. Sourour [Citation18]. The above papers gave rise to a series of works devoted to the description of mappings which are close to automorphisms and derivations of C-algebras and operator algebras. R.V. Kadison set out a program of study for local maps in [Citation17], suggesting that local derivations could prove useful in building derivations with particular properties. R.V.Kadison proved in [Citation17, Theorem A] that each continuous local derivation of a von Neumann algebra M into a dual Banach M-bimodule is a derivation. This theorem gave way to studies on derivations on C-algebras, culminating with a result due to B.E. Johnson, which asserts that every local derivation of a C-algebra A into a Banach A-bimodule is automatically continuous, and hence is a derivation [Citation15, Theorem 5.3].

Let us present a list of finite or infinite dimensional algebras for which all local derivations are derivations:

  • C-algebras, in particular, the algebra Mn(C) of all square matrices of order n over the field of complex numbers [Citation15, Citation17];

  • the complex polynomial algebra C[x] [Citation17];

  • finite dimensional simple Lie algebras over an algebraically closed field of characteristic zero [Citation7];

  • Borel subalgebras of finite-dimensional simple Lie algebras [Citation22];

  • infinite dimensional Witt algebras over an algebraically closed field of characteristic zero [Citation12];

  • Witt algebras over a field of prime characteristic [Citation23];

  • solvable Lie algebras of maximal rank [Citation20];

  • Cayley algebras [Citation5];

  • finite dimensional semi-simple Leibniz algebras over an algebraically closed field of characteristic zero [Citation21];

  • locally finite split simple Lie algebras over a field of characteristic zero [Citation10];

  • finite-dimensional semisimple Filippov n-ary (n > 1) algebras [Citation14];

  • the Schrödinger algebras [Citation2].

On the other hand, some algebras (in most cases close to nilpotent algebras) admit pure local derivations, that is, local derivations which are not derivations. Below a short list of some classes of algebras which admit pure local derivations:

  • the algebra C(x) of rational functions [Citation17];

  • finite dimensional filiform Lie algebras [Citation7];

  • p-filiform Leibniz algebras [Citation9];

  • direct sum null-filiform Leibniz algebras [Citation1];

  • solvable Leibniz algebras with abelian nilradicals, which have a one dimensional complementary space [Citation6];

  • the algebra of lower triangular n × n-matrices [Citation13];

  • real octonion algebra [Citation8];

  • the ternary Malcev algebra M8 [Citation14].

In this paper, we will study local derivations on the conformal Galilei algebra. We prove that every local derivation on the conformal Galilei algebra is a derivation.

2 Preliminaries

In this paper, we denoted by Z,N, and C the sets of all integers, positive integers, and complex numbers, respectively. In this section we give some necessary notations, definitions and preliminary results.

A derivation on a Lie algebra g is a linear map D: gg satisfying D[x,y]=[D(x),y]+[x,D(y)]for all x,yg. Denote by Der(g) the set of all derivations of g. For all ag, the map ad(a) on g defined as ad(a)(x)=[a,x],xg is a derivation and derivations of this form are called inner derivation and denote by ad(g). Derivations which are not inner are called outer derivations.

A linear operator Δ is called a local derivation if for any xg, there exists a derivation Dx:gg (depending on x) such that Δ(x)=Dx(x). we denote by LocDer(g) the set of all local derivations on g.

In recent years Galilei groups and their Lie algebras have been intensively studied. The interest is due to an appearance of this kind of symmetries in very different areas of physics and mathematics [Citation3, Citation16]. The conformal extension of the Galilei algebra is parameterized by a positive half-integer number l and is called the l-conformal Galilei algebra. For lN12, we denote the conformal Galilei algebra by g, which has a basis given by {e,h,f,pk,z|k=0,1,2,,2l}and the Lie bracket given by: [h,e]=2e,      [h,f]=2f,      [e,f]=h,[h,pk]=2(lk)pk,      [e,pk]=kpk1,      [f,pk]=(2lk)pk+1,[z,g]=0,[pk,pk]=δk+k,2l(1)k+l+12k!(2lk)!z,  for k,k=0,1,2,,2l, where δ is the Kronecker Delta.

The conformal Galilei algebra can be viewed as a semidirect product g=sl2Hl of two subalgebras. sl2=span{e,h,f} and Heisenberg subalgebra Hl=span{pk,z|k=0,1,2,,2l}. The irreducible representations of the conformal Galilei algebra are studied in [Citation4, Citation11, Citation19, Citation25].

The following lemma can be used to determine the derivation of g.

Let τ be an outer derivation of g determined by τ(h)=τ(e)=τ(f)=0,      τ(z)=z,      τ(pk)=12pk,      k=0,1,,2l.

Lemma 2.1.

[Citation24] Der(g)=Cτad(g).

3 Local derivations of conformal Galilei algebra

In this section we investigate local derivations on conformal Galilei algebra.

The following theorem is the main result of this section.

Theorem 3.1.

Every local derivation on l-conformal Galilei algebra is a derivation, where l12,32.

For any local derivation Δ on g by Lemma 2.1 we have Δ(x)=[bx,x]+λxτ(x).

Put bx=be,xe+bh,xh+bf,xf+k=02lbpi,xpi+bz,xzg.

Then we obtain (3.1) Δ(e)=2bh,eebf,ehk=02l1(k+1)bpk+1,epk,Δ(h)=2be,he+2bf,hf+k=02l2(kl)bpk,hpk,Δ(f)=be,fh2bh,ffk=02l1(2lk)bpk,fpk+1,Δ(p0)=2lch,p0p0+2lbf,p0p1+(1)l12(2l)!bp2l,p0z,Δ(pk)=kbe,pkpk1+2(lk)ch,pkpk+(2lk)bf,pkpk+1++(1)k+l12k!(2lk)!bp2lk,pkz,Δ(p2l)=2lbe,p2lp2l12lch,p2lp2l+(1)3l12bp0,p2lz,Δ(z)=bz,zz,(3.1) where k=1,2,,2l1 and 2(l2i)ch,pi=(2(li)bh,pi+λpi2),i=0,1,,2l.

For the proof of this Theorem we need several Lemmata.

There exists an element a=ae,xe+ah,xh+af,xf+k=02lapk,xpk+az,xzg such that Δ(x)=[a,x]+λxτ(x).

In the following lemmas, we assume that Δ be a local derivation on g such that Δ(h+z)=0.

Lemma 3.2.

Δ(h)=Δ(z)=0.

Proof.

We consider, 0=Δ(h+z)=Δ(h)+Δ(z)=2be,he+2bf,hf+k=02l2(kl)bpk,hpk+bz,zz,which implies be,h=bf,h=bpk,h=bz,z=0, where k{0,1,2,,2l}. Then Δ(h)=Δ(z)=0.

Lemma 3.3.

(3.2) Δ(e)=2bh,eek=02l1(k+1)bpk+1,epk,Δ(f)=2bh,ffk=02l1(2lk)bpk,fpk+1.(3.2)

Proof.

We consider Δ(h+e)=[a,h+e]+λh+eτ(h+e)==[ae,h+ee+ah,h+eh+af,h+ef+k=02lapk,h+epk+az,xz,h+e]+λh+eτ(h+e)==2ae,h+ee+2af,h+ef+k=02l2(kl)apk,h+epk++2ah,h+eeaf,h+ehk=02l1(k+1)apk+1,h+epk.

On the other hand, Δ(h+e)=Δ(h)+Δ(e)=2bh,eebf,ehk=02l1(k+1)bpk+1,epk.

Comparing the coefficients at the basis elements f and h, we get bf,e=0.

Similarly, considering Δ(h+f)=[a,h+f]+λh+fτ(h+f)==[ae,h+fe+ah,h+fh+af,h+ff+k=02lapk,h+fpk+az,xz,h+f]+λh+fτ(h+f)==2ae,h+fe+2af,h+ff+k=02l2(kl)apk,h+fpk++ae,h+fh2ah,h+ffk=02l1(2lk)apk,h+fpk+1.

On the other hand, Δ(h+f)=Δ(h)+Δ(f)=be,fh2bh,ffk=02l1(2lk)bpk,fpk+1.

Comparing the coefficients at the basis elements e and h, we get be,f=0.

Setting m=2l12.

Lemma 3.4.

(3.3) Δ(p0)=2lch,p0p0+2lbf,p0p1,Δ(pi)=ibe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1,Δ(p2l)=2lbe,p2lp2l12lch,p2lp2l,(3.3) where i{1,2,3,,2l1}{m,m+1}.

Proof.

We consider Δ(h+p0)=[a,h+p0]+λh+p0τ(h+p0)==[ae,h+p0e+ah,h+p0h+af,h+p0f+k=02lapk,h+p0pk+az,h+p0z,h+p0]+λh+p0τ(h+p0)==2ae,h+p0e+2af,h+p0f+k=02l2(kl)apk,h+p0pk++(2lah,h+p0+λh+p02)p0+2laf,h+p0p1+(1)l12(2l)!ap2l,h+p0z.

On the other hand, Δ(h+p0)=Δ(h)+Δ(p0)==2lch,p0p0+2lbf,p0p1+(1)l12(2l)!bp2l,p0z.

Comparing the coefficients at the basis elements p2l and z, we have bp2l,p0=0.

Now consider i{1,2,3,,2l1}{m,m+1} Δ(h+pi)=[a,h+pi]+λh+piτ(h+pi)==[ae,h+pie+ah,h+pih+af,h+pif+k=02lapk,h+pipk+az,h+piz,h+pi]+λh+piτ(h+pi)==2ae,h+pie+2af,h+pif+k=02l2(kl)apk,h+pipk++iae,h+pipi1+(2(li)ah,h+pi+λh+pi2)pi+(2li)af,h+pipi+1++(1)i+l12i!(2li)!ap2li,h+piz.

On the other hand, Δ(h+pi)=Δ(h)+Δ(pi)==kbe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1++(1)i+l12i!(2li)!bp2li,piz.

Comparing the coefficients at the basis elements p2li and z, we get bp2li,pi=0.

Similarly, considering Δ(h+p2l)=[a,h+p2l]+λh+p2lτ(h+p2l)==[ae,h+p2le+ah,h+p2lh+af,h+p2lf+k=02lapk,h+p2lpk+az,h+p2lz,h+p2l]+λh+p2lτ(h+p2l)==2ae,h+p2le+2af,h+p2lf+k=02l2(kl)apk,h+p2lpk++2lae,h+p2lp2l1+(2lah,h+p2l+λh+p2l2)p2l+(1)3l12ap0,h+p2lz.

On the other hand, Δ(h+p2l)=Δ(h)+Δ(pi)==2lbe,p2lp2l12lch,p2lp2l+(1)3l12bp0,p2lz.

Comparing the coefficients at the basis elements p0 and z, we obtain bp0,p2l=0.

Lemma 3.5.

Δ(e)=2bh,eembpm,epm1(m+1)bpm+1,epm,Δ(f)=2bh,ff(m+1)bpm,fpm+1mbpm+1,fpm+2.

Proof.

We consider Δ(e+p0)=[a,e+p0]+λe+p0τ(e+p0)==[ae,e+p0e+ah,e+p0h+af,e+p0f+k=02lapk,e+p0pk+az,e+p0z,e+p0]+λe+p0τ(e+p0)==2ah,e+p0eaf,e+p0hk=02l1(k+1)apk+1,e+p0pk++(2lah,e+p0+λe+p02)p0+2laf,e+p0p1+(1)l+12(2l)!ap2l,e+p0z.

On the other hand, Δ(e+p0)=Δ(e)+Δ(p0)=2bh,eek=02l1(k+1)bpk+1,epk++2lch,p0p0+2lbf,p0p1.

Comparing the coefficients at the basis elements p2l1 and z, we get bp2l,e=0.

Now consider, i{1,2,3,,2l1}{m,m+1} Δ(e+pi)=[a,e+pi]+λe+piτ(e+pi)==[ae,e+pie+ah,e+pih+af,e+pif+k=02lapk,e+pipk+az,a+piz,e+pi]+λe+piτ(e+pi)==2ah,e+pieaf,e+pihk=02l1(k+1)apk+1,e+pipk++iae,e+pipi1+(2(li)ah,e+pi+λe+pi2)pi+(2li)af,e+pipi+1++(1)i+l12i!(2li)!ap2li,e+piz.

On the other hand, Δ(e+pi)=Δ(e)+Δ(pi)=2bh,eek=02l1(k+1)bpk+1,epk++ibe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1.

Comparing the coefficients at the basis elements p2li1 and z, we have bp2li,e=0.

Similarly, considering i{1,2,3,,2l1}{m,m+1} Δ(f+pi)=[a,f+pi]+λf+piτ(f+pi)==[ae,f+pie+ah,f+pih+af,f+pif+k=02lapk,f+pipk+az,f+iz,f+pi]+λf+piτ(f+pi)==ae,f+pih2ah,f+pifk=02l1(2lk)apk,f+pipk+1++iae,f+pipi1+(2(li)ah,f+pi+λe+fi2)pi+(2li)af,e+fipi+1++(1)i+l12i!(2li)!ap2li,f+piz.

On the other hand, Δ(f+pi)=Δ(f)+Δ(pi)=2bh,ffk=02l1(2lk)bpk,fpk+1++ibe,pipk1+2(li)ch,pipi+(2li)bf,pipi+1.

Comparing the coefficients at the basis elements p2li+1 and z, we get bp2li,f=0.

We considering, Δ(f+p2l)=[a,f+p2l]+λf+p2lτ(f+p2l)==[ae,f+p2le+ah,f+p2lh+af,f+p2lf+k=02lapk,f+p2lpk+az,f+p2lz,f+p2l]+λf+p2lτ(f+p2l)==ae,f+p2lh2ah,f+p2lfk=02l1(2lk)apk,f+p2lpk+1++2lae,f+p2lp2l1+(2lah,f+p2l+λf+p2l2)p2l+(1)3l12ap0,f+p2lz.

On the other hand, Δ(f+p2l)=Δ(f)+Δ(p2l)=2bh,ffk=02l1(2lk)bpk,fpk+1++2lbe,p2lp2l12lch,p2lp2l.

Comparing the coefficients at the basis elements p1 and z, we have bp0,f=0.

Lemma 3.6.

Let l{N+32}. Then Δ(pi)=(2li)ch,pipi,Δ(pm)=2(lm)ch,pmpm+m!(2lm)!bp2lm,pmz,Δ(pm+1)=2(lm1)ch,pm+1pm+1(m+1)!(2lm1)!bp2lm1,pm+1z,where i{1,2,3,,2l}{m,m+1}.

Proof.

l{N+32}. We consider Δ(e+p2l1)=[a,e+p2l1]+λe+p2l1τ(e+p2l1)==[ae,e+p2l1e+ah,e+p2l1h+af,e+p2l1f+k=02lapk,e+p2l1pk+az,e+p2l1z,e+p2l1]++λe+p2l1τ(e+p2l1)==2ah,e+p2l1eaf,e+p2l1hk=02l1(k+1)apk+1,e+p2l1pk++(2l1)ae,e+p2l1p2l2+(2(1l)ah,e+p2l1+λe+p2l12)p2l1+af,e+p2l1p2l++(1)3l32(2l1)!ap1,e+p2l1z.

On the other hand, Δ(e+p2l1)=Δ(e)+Δ(p2l1)=2bh,eembpm,epm1(m+1)bpm+1,epm++(2l1)be,p2l1p2l2+2(1l)ch,p2l1p2l1+bf,p2l1p2l.

Comparing the coefficients at the basis elements p2l and h, we get bf,p2l1=0.

We consider i{0,1,2,,2l4}{m,m+1}, Δ(p2l1+pi)=[a,p2l1+pi]+λp2l1+piτ(p2l1+pi)==[ae,p2l1+pie+ah,p2l1+pih+af,p2l1+pif+k=02lapk,p2l1+pipk+az,p2l1+piz,p2l1+pi]++λp2l1+piτ(p2l1+pi)==(2l1)ae,p2l1+pip2l2+(2(1l)ah,p2l1+pi+λp2l1+pi2)p2l1+af,p2l1+pip2l++(1)3l32(2l1)!ap1,p2l1+piz++iae,p2l1+pipi1+(2(li)ah,p2l1+pi+λp2l1+pi2)pi+(2li)af,p2l1+pipi+1++(1)i+l12i!(2li)!ap2li,p2l1+piz.

On the other hand, Δ(p2l1+pi)=Δ(p2l1)+Δ(pi)=(2l1)be,pip2l2+2(1l)ch,pip2l1++ibe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1.

Comparing the coefficients at the basis elements p2l and pi+1, we have bf,pi=0.

We consider i{m,m+1}, Δ(p2l1+pi)=[a,p2l1+pi]+λp2l1+piτ(p2l1+pi)==[ae,p2l1+pie+ah,p2l1+pih+af,p2l1+pif+k=02lapk,p2l1+pipk+az,p2l1+piz,p2l1+pi]++λp2l1+piτ(p2l1+pi)==(2l1)ae,p2l1+pip2l2+(2(1l)ah,p2l1+pi+λp2l1+pi2)p2l1+af,p2l1+pip2l++(1)3l32(2l1)!ap1,p2l1+piz++iae,p2l1+pipi1+(2(li)ah,p2l1+pi+λp2l1+pi2)pi+(2li)af,p2l1+pipi+1++(1)i+l12i!(2li)!ap2li,p2l1+piz.

On the other hand, Δ(p2l1+pi)=Δ(p2l1)+Δ(pi)=(2l1)be,pip2l2+2(1l)ch,pip2l1++ibe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1+(1)i+l12i!(2li)!bp2li,piz.

Comparing the coefficients at the basis elements p2l and pi+1, for l{N+52} we have bf,pm=bf,pm+1=0 and for l=52 we get only bf,pm+1=0.

We consider i{2l3,2l2}, Δ(p0+pi)=[a,p0+pi]+λp0+piτ(p0+pi)==[ae,p0+pie+ah,p0+pih+af,p0+pif+k=02lapk,p0+pipk+az,p0+piz,p0+pi]+λp0+piτ(p0+pi)==(2lah,p0+pi+λp0+pi2)p0+2laf,p0+pip1+(1)l12(2l)!ap2l,p0+piz++iae,p0+pipi1+(2(li)ah,p0+pi+λp0+pi2)pi+(2li)af,p0+pipi+1++(1)i+l12i!(2li)!ap2li,p0+piz.

On the other hand, Δ(p0+pi)=Δ(p0)+Δ(pi)=2lch,p0p0+2lbf,p0p1++ibe,pipi1+2(li)ch,pipi+(2li)bf,pipi+1.

Comparing the coefficients at the basis elements f and pi+1, we have bf,pi=0.

We consider Δ(f+p1)=[a,f+p1]+λf+p1τ(f+p1)==[ae,f+p1e+ah,f+p1h+af,f+p1f+k=02lapk,f+p1pk+az,f+p1z,f+p1]+λf+p1τ(f+p1)==ae,f+p1h2ah,f+p1fk=02l1(2lk)apk,f+p1pk+1++ae,f+p1p0+(2(l1)ah,f+p1+λf+p12)p1+(2l1)af,f+p1p2++(1)l+12(2l1)!ap2l1,f+p1z.

On the other hand, Δ(f+p1)=Δ(f)+Δ(p1)=bh,ef(m+1)bpm,fpm+1mbpm+1,fpm+2++be,p1p0+2(l1)ch,p1p1.

Comparing the coefficients at the basis elements h and p0, we get be,p1=0.

We consider i{4,5,,2l}{m,m+1}, Δ(p1+pi)=[a,p1+pi]+λp1+piτ(p1+pi)==[ae,p1+pie+ah,p1+pih+af,p1+pif+k=02lapk,p1+pipk+az,p1+piz,p1+pi]+λp1+piτ(p1+pi)==ae,p1+pip0+(2(l1)ah,p1+pi+λp1+pi2)p1+(2l1)af,p1+pip2++(1)l+12(2l1)!ap2l1,p1+piz++iae,p1+pipi1+(2(li)ah,p1+pi+λp1+pi2)pi+(2li)af,p1+pipi+1++(1)i+l12i!(2li)!ap2li,p1+piz.

On the other hand, Δ(p1+pi)=Δ(p1)+Δ(pi)=be,p1p0+2(l1)ch,p1p1++ibe,pipi1+2(li)ch,pipi.

Comparing the coefficients at the basis elements p0 and pi1, we have be,pi=0.

We consider i{m,m+1}, Δ(p1+pi)=[a,p1+pi]+λp1+piτ(p1+pi)==[ae,p1+pie+ah,p1+pih+af,p1+pif+k=02lapk,p1+pipk+az,p1+piz,p1+pi]+λp1+piτ(p1+pi)==ae,p1+pip0+(2(l1)ah,p1+pi+λp1+pi2)p1+(2l1)af,p1+pip2++(1)l+12(2l1)!ap2l1,p1+piz++iae,p1+pipi1+(2(li)ah,p1+pi+λp1+pi2)pi+(2li)af,p1+pipi+1++(1)i+l12i!(2li)!ap2li,p1+piz.

On the other hand, Δ(p1+pi)=Δ(p1)+Δ(pi)=be,p1p0+2(l1)ch,p1p1++ibe,pipi1+2(li)ch,pipi+(1)i+l12i!(2li)!bp2li,piz.

Comparing the coefficients at the basis elements p0 and pi1, for l{N+52} which implies be,pi=0.

We consider Δ(p1+p2l)=[a,p1+p2l]+λp1+p2lτ(p1+p2l)==[ae,p1+p2le+ah,p1+p2lh+af,p1+p2lf+k=02lapk,p1+p2lpk+az,p1+p2l,p1+p2l]+λp1+p2lτ(p1+p2l)==ae,p1+p2lp0+(2(l1)ah,p1+p2l+λp1+p2l2)p1+(2l1)af,p1+p2lp2++(1)l+12(2l1)!ap2l1,p1+p2lz++2lae,p1+p2lp2l1+(2lah,p1+p2l+λp1+p2l2)p2l+(1)3l12ap1,p1+p2lz.

On the other hand, Δ(p1+p2l)=Δ(p1)+Δ(pi)=be,p1p0+2(l1)ch,p1p1+(2l1)bf,p1p2++2lbe,p2lp2l12lch,p2lp2l.

Comparing the coefficients at the basis elements p0 and p2l1, we have be,p2l=0.

We consider i{2,3}, Δ(pi+p2l)=[a,pi+p2l]+λpi+p2lτ(pi+p2l)==[ae,pi+p2le+ah,pi+p2lh+af,pi+p2lf+k=02lapk,pi+p2lpk+az,pi+p2lz,pi+p2l]+λpi+p2lτ(pi+p2l)==iae,pi+p2lpi1+(2(li)ah,pi+p2l+λpi+p2l2)pi+(2li)af,pi+p2lpi+1++(1)i+l12i!(2li)!ap2li,pi+p2lz++2lae,pi+p2lp2l1+(2lah,pi+p2l+λpi+p2l2)p2l+(1)3l12ap0,pi+p2lz.

On the other hand, Δ(pi+p2l)=Δ(pi)+Δ(pi)=ibe,pipi1+2(li)ch,pipi2lch,p2lp2l.

Comparing the coefficients at the basis elements p2l1 and pi1, for l{N+52} we have be,p2=bf,p3=0 and for l=52 we get only be,p2=0.

Therefore, for case l=52 take an element y=p0+p2+p4 Δ(y)=[a,p0+p2+p4]+λyτ(p0+p2+p4)==[ae,ye+ah,yh+af,yf+k=02lapk,ypk+az,yz,p0+p2+p4]+λyτ(p0+p2+p4)==(2lah,y+λy2)p0+2laf,yp1+(1)l+12(2l)!ap2l,yz++2ae,yp1+(2(l2)ah,y+λy2)p2+(2l2)af,yp3++(1)2+l122!(2l2)!ap2l2,yz++4ae,yp3+(2(l4)ah,y+λy2)p4+(2l4)af,yp5++(1)4+l124!(2l4)!ap2l4,yz.

On the other hand, Δ(y)=Δ(p0)+Δ(p2)+Δ(p4)=2lch,p0p0++2be,p2p1+2(l2)ch,p2p2+(2l2)bf,p2p3++2(l4)ch,p4p4.

Comparing the coefficients at the basis elements p1,p3 and p5, we have bf,p2=0.

Therefore, for case l=52 take an element u=p1+p3+p5 Δ(u)=[a,p1+p3+p5]+λyτ(p1+p3+p5)==[ae,ue+ah,uh+af,uf+k=02lapk,upk+az,uz,p1+p3+p5]+λuτ(p1+p3+p5)==ae,up0+(2(l1)ah,u+λu2)+(2l1)af,up2++(1)1+l121!(2l1)!ap2l1,uz+3ae,up2+(2(l3)ah,u+λu2)p3+(2l3)af,up4++(1)3+l123!(2l3)!ap2l3,uz+5ae,up4+(5ah,p5+λpu2)p5+(1)3l12bp0,uz.

On the other hand, Δ(u)=Δ(p1)+Δ(p3)+Δ(p5)=3ch,p1p1++3be,p3p2ch,p3p35ch,p5p5.

Comparing the coefficients at the basis elements p0,p2, and p4, we have be,p3=0.

Lemma 3.7.

Δ(pm)=2(lm)ch,pmpm,Δ(pm+1)=2(lm1)ch,pm+1pm+1.

Proof.

We considering, take an element y=h+pm+pm+1m!(m+1)!z, (3.4) Δ(y)=[a,y]+λyτ(y)==[ae,ye+ah,yh+af,yf+k=02lapk,ypk,h+pm+pm+1m!(m+1)!z]++λyτ(h+pm+pm+1m!(m+1)!z)==2ae,ye+2af,yf+k=02l2(kl)apk,ypk++mae,ypm1+(2(lm)ah,y+λy2)pm+(2lm)af,ypm+1++(1)m+l12m!(2lm)!ap2lm,yz++(m+1)ae,ypm+(2(lm1)ah,y+λy2)pm+1++(2lm1)af,ypm+2+(1)m+l+12(m+1)!(2lm1)!ap2lm1,yz+m!(m+1)!λyz.(3.4)

On the other hand, (3.5) Δ(y)=Δ(h+pm+pm+1m!(m+1)!z)=Δ(pm)+Δ(pm+1)==2(lm)ch,pmpm+(1)m+l12m!(2lm)!bp2lm,pmz++2(lm1)ch,pm+1pm+1+(1)m+l+12(m+1)!(2lm1)!bp2lm1,pm+1z.(3.5)

Comparing the coefficients at the basis elements e,f,pm,pm+1 and z, (3.4) and (3.5) we obtain that (3.6) bpm+1,pm+bpm,pm+1=ch,pm+ch,pm+1.(3.6)

Similarly, considering take an element u=h+pmpm+1+m!(m+1)!z, (3.7) Δ(u)=[a,u]+λuτ(u)==[ae,ue+ah,uh+af,uf+k=02lapk,upk,h+pmpm+1+m!(m+1)!z]++λuτ(h+pmpm+1+m!(m+1)!z)==2ae,ue+2af,uf+k=02l2(kl)apk,upk++mae,upm1+(2(lm)ah,u+λu2)pm+(2lm)af,upm+1++(1)m+l12m!(2lm)!ap2lm,uz+(m+1)ae,upm(2(lm1)ah,u+λu2)pm+1(2lm1)af,upm+2(1)m+l+12(m+1)!(2lm1)!ap2lm1,uz+m!(m+1)!λuz.(3.7)

On the other hand, (3.8) Δ(u)=Δ(h+pmpm+1+m!(m+1)!z)=Δ(pm)Δ(pm+1)==2(lm)ch,pmpm+(1)m+l12m!(2lm)!bp2lm,pmz+2(lm1)ch,pm+1pm+1(1)m+l+12(m+1)!(2lm1)!bp2lm1,pm+1z.(3.8)

Comparing the coefficients at the basis elements e,f,pm,pm+1 and z, by EquationEquations (3.7) and Equation(3.8) we obtain that (3.9) bpm+1,pmbpm,pm+1=ch,pmch,pm+1.(3.9)

Similarly, considering take an element v=hpm+pm+1+m!(m+1)!z, (3.10) Δ(v)=[a,v]+λvτ(v)==[ae,ve+ah,vh+af,vf+k=02lapk,vpk,hpm+pm+1+m!(m+1)!z]++λvτ(hpm+pm+1+m!(m+1)!z)==2ae,ve+2af,vf+k=02l2(kl)apk,vpk+mae,vpm1(2(lm)ah,v+λv2)pm(2lm)af,vpm+1+(1)m+l12m!(2lm)!ap2lm,vz++(m+1)ae,vpm+(2(lm1)ah,v+λv2)pm+1++(2lm1)af,vpm+2+(1)m+l+12(m+1)!(2lm1)!ap2lm1,vz++m!(m+1)!λvz.(3.10)

On the other hand, (3.11) Δ(v)=Δ(hpm+pm+1+m!(m+1)!z)=Δ(pm)+Δ(pm+1)==2(lm)ch,pmpm(1)m+l12m!(2lm)!bp2lm,pmz++2(lm1)ch,pm+1pm+1+(1)m+l+12(m+1)!(2lm1)!bp2lm1,pm+1z.(3.11)

Comparing the coefficients at the basis elements e,f,pm,pm+1 and z, (3.10) and (3.11) we obtain that (3.12) bpm+1,pm+bpm,pm+1=ch,pmch,pm+1.(3.12)

Comparing (3.6), (3.9), and (3.12) we obtain that bpm+1,pm=bpm,pm+1=0.

Lemma 3.8.

Δ(e)=2bh,ee(m+1)bpm+1,epm,Δ(f)=2bh,ff(m+1)bpm,fpm+1.

Proof.

We consider Δ(e+pm+1)=[a,e+pm+1]+λe+pm+1τ(e+pm+1)==[ae,e+pm+1e+ah,e+pm+1h+af,e+pm+1f+k=02lapk,e+pm+1pk+az,e+pm+1z,e+pm+1]++λe+pm+1τ(e+pm+1)==2ah,e+pm+1eaf,e+pm+1hk=02l1(k+1)apk+1,e+pm+1pk++(m+1)ae,e+pm+1pm+(2(lm1)ah,e+pm+1+λe+pm+12)pm+1++(2lm1)af,e+pm+1pm+2+(1)m+l+12(m+1)!m!ap2lm1,e+pm+1z.

On the other hand, Δ(e+pm+1)=Δ(e)+Δ(pm+1)=2bh,eembpm,epm1(m+1)bpm+1,epm++2(lm1)ch,pm+1pm+1.

Comparing the coefficients at the basis elements pm1 and z, we get bpm,e=0.

Similarly, considering Δ(f+pm)=[a,f+pm]+λf+pmτ(f+pm)==[ae,f+pme+ah,f+pmh+af,f+pmf+k=02lapk,f+pmpk+az+f+pmz,f+pm]++λf+pmτ(f+pm)==ae,f+pmh2ah,f+pmfk=02l1(2lk)apk,f+pmpk+1++mae,f+pmpm1+(2(lm)ah,f+pm+λe+fm2)pm+(2lm)af,e+fmpm+1++(1)m+l12m!(2lm)!ap2lm,f+pmz.

On the other hand, Δ(f+pm)=Δ(f)+Δ(pm)=2bh,ef(m+1)bpm,fpm+1mbpm+1,fpm+2++mbe,pmpm1+2(lm)ch,pmpm+(2lm)bf,pmpm+1.

Comparing the coefficients at the basis elements pm+2 and z, we get bpm+1,f=0.

Lemma 3.9.

Let l{N+32}. Then Δ(pi)=2(li)bh,fpi.

Proof.

We consider take an element y=h+pi+p2li+(1)i+l12i!(2li)!2(il)z,i=0,1,,m (3.13) Δ(y)=[a,y]+λyτ(y)==[ae,ye+ah,yh+af,yf+k=02lapk,ypk+az,yz,y]++λyτ(h+pi+p2li+(1)i+l12i!(2li)!2(il)z)==2ae,ye+2af,yf+k=02l2(kl)apk,ypk++iae,ypi1+(2(li)ah,y+λy2)pi+(2li)af,ypi+1++(1)i+l12i!(2li)!ap2li,yz++(2li)ae,yp2li1+(2(il)ah,y+λy2)p2li+iaf,yp2li+1++(1)3li12(2li)!i!api,yz+(1)i+l12i!(2li)!2(il)λyz.(3.13)

On the other hand, (3.14) Δ(y)=Δ(h+pi+p2li+(1)i+l12i!(2li)!2(il)z)=Δ(pi)+Δ(p2li)==(2li)ch,pipi+ich,p2lip2li.(3.14)

Comparing the coefficients at the basis elements pi,p2li, and z, we get 2(il)api,y2(il)ah,y+λy2=2(il)ch,pi,2(il)ap2li,y+2(il)ah,y+λy2=2(il)ch,p2li,(1)i+l12i!(2li)!ap2li,y(1)i+l12i!(2li)!apk,y+i+l12i!(2li)!2(il)λy=0,which implies (3.15) ch,pi=ch,p2li, i=0,1,,m.(3.15)

We consider take an element t=f+pi+1+p2li+(1)i+l12i!(2li1)!z,i=0,1,,m, Δ(t)=[a,t]+λtτ(t)==[ae,te+ah,th+af,tf+k=02lapk,tpk+az,tz,t]++λtτ(f+pi+1+p2li+(1)i+l+12i!(2li1)!z)==ae,th2ah,tfk=02l1(2lk)apk,tpk+1++(i+1)ae,tpi+(2(li1)ah,t+λt2)pi+1+(2li1)af,tpi+2++(1)i+l+12(i+1)!(2li1)!ap2li1,tz++(2li)ae,tp2li1+(2(il)ah,t+λt2)p2li+iaf,tp2li+1++(1)3li12(2li)!i!api,tz+(1)i+l12i!(2li1)!λtz.

On the other hand, Δ(y)=Δ(f+pi+1+p2li+(1)i+l12i!(2li1)!z)=Δ(pi+1)+Δ(p2li)==(2li1)ch,pi+1pi+1+ich,p2lip2li.

Comparing the coefficients at the basis elements f,pi+1,p2li, and z, we get (3.16) 2ah,t=2bh,f,(i2l)api,t+2(li1)ah,t+λt2=2(li1)ch,pi+1,(i+l)ap2li1,t+2(il)ah,t+λt2=2(il)ch,p2li,(1)i+l+12(i+1)!(2li1)!ap2li1,t(1)i+l12i!(2li)!apk,t+(1)i+l12i!(2li1)!λy=0,(3.16) which implies (3.17) 2bh,f=2(li1)ch,pi+1+2(il)ch,p2li,i=0,1,,m1,(3.17) and i = m we obtain that bh,f=ch,pm+1.

Comparing (3.15) and (3.17) we obtain that (3.18) 2(il)ch,pi=2(li1)ch,pi+1+2bh,f,i=0,1,,m,(3.18) on recurrent equation instead of i, gradually substituting m,m1,,0 we obtain the following (3.19) ch,pi=bh,f,i=0,1,,m.(3.19)

Comparing (3.15) and (3.19) we obtain that ch,pi=bh,f,i=0,1,,2l.

Lemma 3.10.

Let l{N+32}. Then Δ(e)=2bh,fe,Δ(f)=2bh,ff.

Proof.

We consider Δ(e+f)=[a,e+f]+λe+fτ(e+f)==[ae,e+fe+ah,e+fh+af,e+ff+k=02lapk,e+fpk+az,e+fz,e+f]+λe+fτ(e+f)==2ah,e+feaf,e+fhk=02l1(k+1)apk+1,e+fpk++ae,e+fh2ah,e+ffk=02l1(2lk)a+pk,e+fpk+1.

On the other hand, Δ(e+f)=Δ(e)+Δ(f)=2bh,ee(m+1)bpm+1,epm2bh,ff(m+1)bpm,fpm+1.

Comparing the coefficients at the basis elements e and f, we get bh,e=bh,f.

We consider take an element y=e+pm(m!)22z, Δ(y)=[a,e+pm(m!)22z]+λyτ(e+pm(m!)22z)==[ae,ye+ah,yh+af,yf+k=02lapk,ypk+az,yz,y]+λyτ(y)==2ah,yeaf,yhk=02l1(k+1)apk+1,ypk++mae,ypm1+(2(lm)ah,y+λy2)pm+(2lm)af,ypm+1++m!(2lm)!ap2lm,yz(m!)22λyz.

On the other hand, Δ(y)=Δ(e)+Δ(pm)=2bh,ee(m+1)bpm+1,epm++2(lm)bh,epm.

Comparing the coefficients at the basis elements e,pm, and z, we get (3.20) ah,y=bh,e(m+1)apm+1,y+ah,y+λy2=(m+1)bpm+1,e+bh,em!(m+1)!apm+1,y(m!)22λy=0(3.20) which implies bpm+1,e=0.

We consider take an element y=f+pm+1+(m!)22z, Δ(y)=[a,f+pm+1+(m!)22z]+λyτ(f+pm+1+(m!)22z)==[ae,ye+ah,yh+af,yf+k=02lapk,ypk+az,yz,y]+λyτ(y)==ae,yh2ah,yfk=02l1(2lk)apk,ypk+1++(m+1)ae,ypm+(2(lm1)ah,y+λy2)pm+1+(2lm1)af,ypm+2++(1)m+l+12(m+1)!(2lm1)!ap2lm1,yz+(m!)22λyz.

On the other hand, Δ(y)=Δ(f)+Δ(pm+1)=2bh,ff(m+1)bpm,fpm+1++2(lm1)bh,epm+1.

Comparing the coefficients at the basis elements f,pm+1 and z, we get (3.21) ah,y=bh,f(m+1)apm,yah,y+λy2=(m+1)bpm,ebh,e(m+1)!(m)!apm,yz+(m!)22λy=0(3.21) which implies bpm,e=0.

Lemma 3.11.

Δ is an inner derivation on g with l1,5.

Proof.

For any x=xee+xhh+xff+k=02lxpkpk+xzzg. We consider Δ(x)[bh,fh,x]=Δ(xee+xhh+xff+k=02lxpkpk+xzz)[bh,fh,xee+xhh+xff+k=02lxpkpk+xzz]==2xebh,fe2xfbh,ff+k=02lxpk(2l2k)bh,fpk2xebh,fe+2xfbh,ffk=02lxpk(2l2k)bh,fpk=0.

Then Δ is an inner derivation. □

Now we are in position to prove Theorem 3.1.

Proof of Theorem 3.1.

Let Δ be a local derivation of g. Take a derivation Dx such that Δ(x)=Dx(x).

Set Δ1=ΔDx. Then Δ1 is a local derivation such that Δ1(h+z)=0. By Lemma 3.11, Δ1(x)=adx. Thus Δ=Dx+adx. Then Δ is a derivation. The proof is complete. □

Acknowledgments

We thank professor K. K. Kudaybergenov for the helpful comments and suggestions that contributed to improving this paper.

Data availability statement

No data was used for the research described in the article.

References

  • Adashev, J. Q., Yusupov, B. B. (2022). Local derivations and automorphisms of direct sum null-filiform Leibniz algebras. Lobachevskii J. Math. 43(12):1–7.
  • Alauadinov, A. K., Yusupov, B. B. (2023). Local derivations of the Schrödinger algebras. Algebra Colloq.
  • Andrzejewski, K., Gonera, J., Maslanka, P. (2012). Nonrelativistic conformal groups and their dynamical realizations. Phys. Rev. D 86:065009. DOI: 10.1103/PhysRevD.86.065009.
  • Aizawa, N., Isaac, P. S. (2011). On irreducible representations of the exotic conformal Galilei algebra. J. Phys. A 44:035401. DOI: 10.1088/1751-8113/44/3/035401.
  • Ayupov, Sh. A., Elduque, A., Kudaybergenov, K. K. (2022). Local derivations and automorphisms of Cayley algebras. J. Pure Appl. Algebra. 227(5):107277. DOI: 10.1016/j.jpaa.2022.107277.
  • Ayupov, Sh. A., Khudoyberdiyev, A. Kh., Yusupov, B. B. (2020). Local and 2-local derivations of solvable Leibniz algebras. Int. J. Algebra Comput. 30(6):1185–1197. DOI: 10.1142/S021819672050037X.
  • Ayupov, Sh. A., Kudaybergenov, K. K. (2016). Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl. 493:381–398. DOI: 10.1016/j.laa.2015.11.034.
  • Ayupov, Sh. A., Kudaybergenov, K. K., Allambergenov, A. (2023). Local and 2-local derivations on octonion algebras. J. Algebra Appl. 22(7):2350147. DOI: 10.1142/S0219498823501475.
  • Ayupov, Sh. A., Kudaybergenov, K. K., Yusupov, B. B. (2020). Local and 2-local derivations of p-filiform Leibniz algebras. J. Math. Sci. 245(3):359–367.
  • Ayupov, Sh. A., Kudaybergenov, K. K., Yusupov, B. B. (2022). Local and 2-local derivations of locally simple Lie algebras. Contemp. Math. Fundam. Dir. 68(1):59–69. DOI: 10.22363/2413-3639-2022-68-1-59-69.
  • Cai, Y., Cheng, Y., Shen, R. (2014). Quasi-Whittaker modules for Schrodinger algebra. Linear Algebra Appl. 463: 16–32. DOI: 10.1016/j.laa.2014.09.001.
  • Chen, Y., Zhao, K., Zhao, Y. (2022). Local derivations on Witt algebras. Linear Multilinear Algebra 70(6):1159–1172. DOI: 10.1080/03081087.2020.1754750.
  • Elisova, A. P., Zotov, I. N., Levchuk, V. M., Suleymanova, G. S. (2011). Local automorphisms and local derivations of nilpotent matrix algebras. Izv. Irkutsk Gos. Univ. 4(1):9–19.
  • Ferreira, B., Kaygorodov, I., Kudaybergenov, K. K. (2021). Local and 2-local derivations of simple n-ary algebras. Ricerchedi Matematica. DOI: 10.1007/s11587-021-00602-3.
  • Johnson, B. E. (2001). Local derivations on C*-algebras are derivations. Trans. Amer. Math. Soc. 353:313–325.
  • Galajinsky, A., Masterov, I. (2013). Dynamical realization of l-conformal Galilei algebra and oscillators. Nuclear Phys. B, 866(2):212–227. DOI: 10.1016/j.nuclphysb.2012.09.004.
  • Kadison, R. V. (1990). Local derivations. J. Algebra 130:494–509. DOI: 10.1016/0021-8693(90)90095-6.
  • Larson, D. R., Sourour, A. R. (1990). Local derivations and local automorphisms of B(X). Proc. Sympos. Pure Math. 51:187–194.
  • Lü, R., Mazorchuk, V., Zhao, K. (2014). On simple modules over conformal Galilei algebras. J. Pure Appl. Algebra 140:1885–1899.
  • Kudaybergenov, K. K., Omirov, B. A., Kurbanbaev, T. K. (2022). Local derivations on solvable Lie algebras of maximal rank. Commun. Algebra 50(9):1–11.
  • Kudaybergenov, K. K., Kaygorodov, I., Yuldashev, I. (2022). Local derivations of semisimple Leibniz algebras. Commun. Math. 30(2):1–12.
  • Yu, Y., Chen, Zh. (2020). Local derivations on Borel subalgebras of finite-dimensional simple Lie algebras. Commun. Algebra 48(1):1–10. DOI: 10.1080/00927872.2018.1541465.
  • Yao, Y. F. (2022). Local derivations on the Witt algebra in prime characteristic. Linear Multilinear Algebra 70: 2919–2933. DOI: 10.1080/03081087.2020.1819189.
  • Zhao, Yu., Cheng, Y. (2021). 2-local derivation on the conformal Galilei algebra, arXiv:2103.04237.
  • Zhang, X., Cheng, Y. (2015). Simple Schrodinger modules which are locally finite over the positive part. J. Pure Appl. Algebra 219:2799–2815. DOI: 10.1016/j.jpaa.2014.09.029.