143
Views
121
CrossRef citations to date
0
Altmetric
Miscellany

Contrasting hippocampal and perirhinalcortex function using immediate early gene imaging

&
Pages 218-233 | Published online: 13 Oct 2011
 

Abstract

The perirhinal cortex and hippocampus have close anatomical links, and it might, therefore, be predicted that they have close, interlinked roles in memory. Lesion studies have, however, often failed to support this prediction, providing dissociations and double dissociations between the two regions on tests of object recognition and spatial memory. In a series of rat studies we have compared these two regions using the expression of the immediate early gene c-fosas a marker of neuronal activity. This gene imaging approach makes it possible to assess the relative involve-ment of different brain regions and avoids many of the limitations of the lesion approach. A very consistent pattern of results was found as the various hippocampal subfields but not the peri-rhinal cortex show increased c-fosactivity following tests of spatial learning. In contrast, the perirhinal cortex but none of the hippocampal subfields show increased c-fosactivity when presented with novel rather than familiar visual objects. When novel scenes are created by the spatial rearrangement of familiar objects it is the hippocampus and not the perirhinal cortex that shows c-foschanges. This double dissociation for gene expression accords with that found from lesion studies and highlights the different contributions of the perirhinal cortex and hippocampus to memory.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.