274
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Design and validation of a novel multi-epitopes vaccine against hantavirus

, , , , , ORCID Icon, , & show all
Pages 4185-4195 | Received 21 Mar 2023, Accepted 23 May 2023, Published online: 01 Jun 2023
 

Abstract

Hantavirus is a member of the order Bunyavirales and an emerging global pathogen. Hantavirus infections have affected millions of people globally based on available epidemiological data and research studies. Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are the two main human diseases associated with hantavirus infections. Hence, efforts are required to develop a potent vaccine against the pathogen. The only vaccine that is in use for hantavirus is an inactivated virus vaccine, “Hantavax”, but it failed to produce neutralizing antibodies. Vaccine development is of much importance in dealing with the surge of hantavirus globally. In this study, hantavirus five proteins (N protein, G1 and G2, L protein, and non-structural proteins) were used in NetCTL 1.2 program to predict T-cell epitopes. To predict major histocompatibility complex (MHC) binding alleles, an immune epitope database (IEDB) was used. All predicted epitopes were then investigated for different immunoinformatics analyses such as antigenicity and toxicity analyses. The good water-soluble, non-toxic, probable antigenic, and DRB*0101 binder was selected. A multi-epitopes-based vaccine designing was then done where linkers were used to connect the shortlisted epitopes. In addition, an adjuvant molecule was supplementary to the multi-epitopes peptide to improve the vaccine’s immunogenic potential. The final vaccine construct’s three-dimensional structure was modeled by ab initio method. The vaccine molecule was then evaluated for its binding potential with TLR-3 immune receptor, which is key for its recognition and processing by the host immune system. Docking studies were performed using HADDOCK software. The best-docked complex was selected and visualized for intermolecular binding and interactions using UCSF Chimera 1.16 software. The findings revealed that the designed vaccine might be a potential vaccine against hantavirus and can be used in experimental animal model testings.

Communicated by Ramaswamy H. Sarma

Acknowledgments

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2023R632), King Saud University, Riyadh, Saudi Arabia.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.