141
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5178-5196 | Received 07 Feb 2023, Accepted 09 Jun 2023, Published online: 20 Jun 2023
 

Abstract

The cases of bacterial multidrug resistance are increasing every year and becoming a serious concern for human health. Multidrug efflux pumps are key players in the formation of antibiotic resistance, which transfer out a broad spectrum of drugs from the cell and convey resistance to the host. Efflux pumps have significantly reduced the efficacy of the previously available antibiotic armory, thereby increasing the frequency of therapeutic failures. In gram-negative bacteria, the AcrAB-TolC efflux pump is the principal transporter of the substrate and plays a major role in the formation of antibiotic resistance. In the current work, advanced computer-aided drug discovery approaches were utilized to find hit molecules from the library of biogenic chalcones against the bacterial AcrB efflux pump. The results of the performed computational studies via molecular docking, drug-likeness prediction, pharmacokinetic profiling, pharmacophore mapping, density functional theory, and molecular dynamics simulation study provided ZINC000004695648, ZINC000014762506, ZINC000014762510, ZINC000095099506, and ZINC000085510993 as stable hit molecules against the AcrB efflux pumps. Identified hits could successfully act against AcrB efflux pumps after optimization as lead molecules.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.