131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening and molecular growth guide the design of inhibitors for the influenza virus drug-resistant mutant M2-V27A/S31N

, , , , , & show all
Pages 5253-5267 | Received 21 Feb 2023, Accepted 09 Jun 2023, Published online: 09 Jul 2023
 

Abstract

The influenza A virus matrix protein 2 (AM2) protein is a proton-gated, proton-selective ion channel essential for influenza replication that has been identified as an antiviral target. The drug-resistance of the M2-V27A/S31N strain, which has been growing more prevalent in recent years and has the potential to spread globally, prevents current amantadine inhibitors from having the desired impact. In this study, we compiled the most common influenza A virus strains from 2001–2020 from the U.S. National Center for Biotechnology Information database and hypothesized that M2-V27A/S31N would become a common strain. The lead compound ZINC299830590 was screened for M2-V27A/S31N in the ZINC15 database using a pharmacophore model and molecular descriptors. This lead compound was then optimized by molecular growth, which allowed us to identify important amino acid residues and create interactions with them to produce compound 4. Molecular dynamics simulation showed that the complex of compound 4 and M2-V27A/S31N had certain degrees of stability and flexibility. The binding free energy of compound 4 was calculated using the MM/PB(GB)SA method and totaled −106.525 kcal/mol. Finally, physicochemical and pharmacokinetic profiles were predicted using the Absorption, Distribution, Metabolism, Excretion, and Toxicity model, which indicated the good bioavailability of compound 4. These results provide the basis for further in vivo and in vitro studies to demonstrate that compound 4 is a promising drug candidate against M2-V27A/S31N.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors gratefully acknowledge financial support from the Graduate Innovative Fund of the Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2022025). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.