195
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A novel study to increase the classification parameters on automatic three-class COVID-19 classification from CT images, including cases from Turkey

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 563-583 | Received 02 Feb 2021, Accepted 20 Jun 2022, Published online: 30 Jun 2022
 

ABSTRACT

A computed tomography (CT) scan is an important radiological imaging method in diagnosing pneumonia caused by SARS-CoV-2. Within the scope of the study, three classes of automatic classification – COVID-19 pneumonia, healthy, and other pneumonia – were carried out. Using deep learning as a classifier, a total of 6,377 CT images were used, including 3,364 COVID-19 pneumonia, 1,766 healthy, and 1,247 other pneumonia images. A total of seven architectures, including the most recent convolutional neural network (CNN) architectures, MobileNetV2, ResNet-101, Xception, Inceptionv3, GoogLeNet, EfficientNetB0, and DenseNet201, were used in the study. The classification results were obtained using the CT images, and they were calculated using the feature images obtained by applying local binary patterns on the CT images. The results were then combined with the help of a pipeline algorithm. The results revealed that the best overall accuracy result obtained by using CNN architectures could be improved by 4.87% with a two-step pipeline algorithm. In addition, significant improvements were achieved in all other measurement parameters within the scope of the study. At the end of the study, the highest sensitivity, specificity, accuracy, F-1 score, and Area under the Receiver Operating Characteristic Curve (AUC) values obtained for the COVID-19 pneumonia class were 0.9004, 0.8901, 0.8956, 0.9010, and 0.9600, respectively. The highest overall accuracy value was 0.8332. The most important output of the work carried out is the demonstration that the results obtained with the most successful CNN architectures used in previous studies can be significantly improved thanks to pipeline algorithms.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 373.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.