142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tribological Characteristics of Rotary Vane Steering Gear Seals Under the Oil With Different Abrasive Particle Sizes

, , , &
Pages 1128-1138 | Received 22 Dec 2022, Accepted 15 Oct 2023, Published online: 07 Nov 2023
 

Abstract

Abrasive particles often cause wear of the rotary vane seals during an operation process, and lead to seal failure and mechanical fault. Focusing on the wear mechanisms and extracting the tribological information during the friction are the prerequisites for extending the service life and carrying out the fault diagnosis prediction of rotary vane seals. Four different sizes of iron particles were selected to mix with the same volume of hydraulic oil to explore the effect of lubricating oil containing abrasive particles on the wear behaviors of the seal. The tribological behaviors during friction were comprehensively analyzed, including the coefficient of friction (COF), wear volume, surface topography, vibration, noise, and other information. The results demonstrated that the wear characteristics of the seal’s contact surfaces changed obviously. The wear morphologies, coefficients of friction, surface roughnesses, and vibration signals increased with the increase of the abrasive particles’ size, with the wear state gradually worsening. When the iron particle size reached 160 μm, the COF increased by 0.047, and the peak vibration signal increased from 4.31 to 36.97 m/s2, compared with pure hydraulic oil lubrication. This tribological information could disclose the wear mechanisms of thermoplastic polyurethanes (TPU) and reveal the TPU wear states. Determining the tribological information for the rubbing pairs was a potential and effective way for evaluating or predicting the rotary vane steering gear seals’ wear states or failure modes. This study lays the foundation for understanding the wear mechanisms and the fault diagnosis of steering gear seals.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (52075399) and the High-Tech Ship Research Project of Ministry of Industry and Information Technology [MIIT [CJ02N20]].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.