83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Theoretical and In Situ High Speed Measurement Study on Friction-Induced Vibration in Water Lubricated Rubber Bearing-Shaft System

, , , , &
Pages 47-61 | Received 08 Oct 2022, Accepted 27 Nov 2023, Published online: 03 Jan 2024
 

Abstract

A water-lubricated rubber stern bearing causes frictional vibration and noise under extreme conditions, severely threatening the survivability and concealment performance of underwater vehicles. To investigate the mechanism of friction-induced vibration and noise, a four-degree-of-freedom nonlinear dynamic model that included bearing support vibration, frictional bearing vibration and torsional shaft vibration was proposed. The velocity-dependent Stribeck friction model described the dynamic friction characteristics between the rubber bearing and stern shaft. Nonlinear system stability was examined using the Lyapunov indirect method and the transient dynamic responses determined by the Runge-Kutta method. Meanwhile, a high-speed in situ measurement experimental study was adopted to explore the mechanism of frictional and torsional vibrations in a water-lubricated bearing-shaft system. Results showed that nonlinear friction excitation was the fatal cause of friction-induced vibration in bearing-shaft system. Under different friction excitations, the coupling vibrations formed between the bearing and bearing support were different, resulting in two main modes of friction-induced vibration: “Chatter” and “Squeal.” The frictional vibration of the bearing and torsional vibration of the stern shaft were tightly coupled. These trends and results might provide a theoretical basis for further research on frictional vibration and wear control in water-lubricated rubber bearing-shaft systems.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Anhui Agricultural University Scientific Research Start-up Fund under number RC412105; the Key Common Technology Research and Development Project of Hefei Science and Technology Bureau under number 2021GJ078; and Scientific Research Project of Colleges and Universities in Anhui Province under number 2022AH050895.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.