194
Views
0
CrossRef citations to date
0
Altmetric
Articles

Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 113-124 | Published online: 05 Mar 2024
 

ABSTRACT

Doxorubicin (DOX)-induced cardiotoxicity is a well known clinical problem, and many investigations have been made of its possible amelioration. We have investigated whether diazoxide (DIA), an agonist at mitochondrial ATP-sensitive potassium channels (mitoKATP), could reverse DOX-induced apoptotic myocardial cell loss, in cultured rat cardiomyocytes. The role of certain proteins in this pathway was also studied. The rat cardiomyocyte cell line (H9c2) was treated with DOX, and also co-treated with DOX and DIA, for 24 h. Distribution of actin filaments, mitochondrial membrane potential, superoxide dismutase (SOD) activity, total oxidant and antioxidant status (TOS and TAS, respectively), and some protein expressions, were assessed. DOX significantly decreased SOD activity, increased ERK1/2 protein levels, and depolarised the mitochondrial membrane, while DIA co-treatment inhibited such changes. DIA co-treatment ameliorated DOX-induced cytoskeletal changes via F-actin distribution and mitoKATP structure. Co-treatment also decreased ERK1/2 and cytochrome c protein levels. Cardiomyocyte loss due to oxidative stress-mediated apoptosis is a key event in DOX-induced cytotoxicity. DIA had protective effects on DOX-induced cardiotoxicity, via mitoKATP integrity, especially with elevated SUR2A levels; but also by a cascade including SOD/AMPK/ERK1/2. Therefore, DIA may be considered a candidate agent for protecting cardiomyocytes against DOX chemotherapy.

Author usage

We gratefully acknowledge Adıyaman University Scientific Research Commission for their support by provision of Grant no. FEFYL/2018-0001. We also thank Dr Muhsin Aydın for editing the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was supported by the Adıyaman University Scientific Research Commission [FEFYL/2018-0001].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 203.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.