62
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Cysteine scanning of transmembrane domain three of the human dipeptide transporter: Implications for substrate transport

, , , &
Pages 218-225 | Received 11 Jan 2007, Accepted 15 Feb 2007, Published online: 08 Oct 2008
 

Abstract

The human intestinal dipeptide transporter (hPepT1) transports dipeptides and pharmacologically active drugs from the intestine to the blood. The role of transmembrane domain 3 (TMD3) of hPepT1 was studied using cysteine-scanning mutagenesis and methane thiosulfonate (MTS) cysteine modification. Each amino acid in TMD3 was individually mutated to a cysteine and Gly–Sar uptake by each mutated and modified transporter was determined relative to wild-type hPepT1. Uptake data for mutated transporters modified with the lipid-insoluble cysteine-modifying reagent MTSET suggested tilting of TMD3 relative to the substrate translocation pathway; the extracellular region of TMD3 showed little MTSET reactivity, indicative of solvent inaccessibility, whereas the intracellular part of TMD3 was relatively solvent accessible. Modification at 10 positions of TMD3 with MTSEA, a lipid-soluble cysteine-modifying reagent, gave unusual and statistically significant increases in Gly–Sar uptake relative to untreated mutants. We interpret these data in terms of the spatial properties of the hPepT1 substrate translocation channel and possible interactions of TMD3 with other transmembrane domains.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.