165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Jacobi-Sobolev, Laguerre-Sobolev, and Gegenbauer-Sobolev differential equations and their interrelations

Received 09 Aug 2023, Accepted 10 Apr 2024, Published online: 25 Apr 2024

Abstract

Recently, the author determined the higher-order differential operator having the Jacobi-Sobolev polynomials as its eigenfunctions for certain eigenvalues. These polynomials form an orthogonal system with respect to an inner product equipped with the Jacobi measure on the interval [1,1] with parameters αN0,β>1 and two point masses N, S>0 at the right end point of the interval involving functions and their first derivatives. The first purpose of the present paper is to reveal how the Jacobi-Sobolev equation reduces to the differential equation satisfied by the Laguerre-Sobolev polynomials on the positive half line via a confluent limiting process as β. Secondly, we explicitly establish the differential equation for the symmetric Gegenbauer-Sobolev polynomials by employing a quadratic transformation of the argument. Each of the three differential operators involved is of order 4α+10 and symmetric with respect to the corresponding Sobolev inner product.

AMS CLASSIFICATIONs:

1. Introduction

Over the past three decades, the theory of orthogonal polynomials with respect to inner products of Sobolev type has witnessed enormous interest and progress, either from a general point of view or with regard to specific classes of polynomials. For various topics and important developments in the field we refer to the profound survey article by F. Marcellán and Y. Xu [Citation1] and, e.g. to [Citation2–5]. In particular, many authors investigated the so-called discrete Sobolev orthogonal polynomials, whose derivatives occur at discrete mass points of the inner product. In this paper, our interest relies on the fact that such polynomial systems often arise as eigenfunctions of a linear differential operator, a feature which proves to be extremely useful for many applications, notably in the harmonic analysis of eigenfunction expansions or in mathematical physics.

In the hierarchy of explicitly determined eigenfunction systems, a prominent role is played by the Jacobi-Sobolev polynomials {Pnα,β,N,S(x)}n=0, with parameters α,β>1,N,S>0. They are orthogonal on 1x1 with respect to an inner product defined for suitable functions f, g by (1.1) (f,g)w(α,β,N,S)=(f,g)w(α,β)+Nf(1)g(1)+Sf(1)g(1).(1.1) For N = S = 0, it comprises the classical scalar product (1.2) (f,g)w(α,β)=11f(x)g(x)wα,β(x)dx,wα,β(x):=Γ(α+β+2)(1x)α(1+x)β2α+β+1Γ(α+1)Γ(β+1),(1.2) associated with the Jacobi polynomials (1.3) Pnα,β(x)=(α+1)nn!Rnα,β(x),Rnα,β(x):=2F1(n,n+α+β+1;α+1;1x2),nN0.(1.3) As usual, (a)0=1,(a)m=a(a+1)(a+m1),aC,mN, is the Pochhammer symbol. Due to the parameters N, S, it is convenient to split up the Jacobi-Sobolev polynomials into four terms, (1.4) Pnα,β,N,S(x)=Pnα,β(x)+NTnα,β(x)+SUnα,β(x)+NSVnα,β(x),1x1,nN0,(1.4) where T0α,β(x)=0,Unα,β(x)=Vnα,β(x)=0 for n1, while for higher values of n, (1.5) Tnα,β(x)=tnα,β(1x2)Pn1α+2,β(x),tnα,β=(α+2)n1(α+β+2)nn!(β+1)n1,Unα,β(x)=un,1α,β(1x2)2Pn2α+4,β(x)un,2α,β(1x2)Pn1α+2,β(x)un,3α,βPnα,β(x)withun,1α,β=(α+2)n1(n+α+β+1)(α+β+2)n+14(α+1)3(n1)!(β+1)n2,un,2α,β=(α+2)n1(n+α+β+1)(α+β+2)n+14(α+1)(α+3)(n2)!(β+1)n1,un,3α,β=(α+2)n(α+β+2)n+14(α+1)3(n2)!(β+1)n1,Vnα,β(x)=vnα,β(1x2)2Pn2α+4,β(x)withvnα,β=(α+2)n1(α+3)n1(α+β+2)n(α+β+2)n+14(α+1)3(n1)!n!(β+1)n2(β+1)n1.(1.5) For the representation (Equation1.4)–(Equation1.5) of the Jacobi-Sobolev polynomials see [Citation6, Cor.2.1] and the papers cited there. As is well known for a long time, the polynomials satisfy a spectral differential equation of finite order 4α+10, provided that α is a nonnegative integer, see [Citation7,Citation8]. But only recently, we succeeded to determine this equation explicitly [Citation6, Theorem 2.4].

Theorem 1.1

For αN0,β>1,N,S0, the Jacobi-Sobolev polynomials yn(x)=Pnα,β,N,S(x),nN0, are the eigenfunctions of the equation (1.6) Lxα,β,N,Syn(x)=λnα,β,N,Syn(x),1x1,(1.6) where the differential operator Lxα,β,N,S and its eigenvalues λnα,β,N,S decompose into four parts, as well, namely (1.7) Lxα,β,N,Sλnα,β,N,S={Lxα,βλnα,β}+N{Txα,βτnα,β}(α+2)!(β+1)α+1+S{Uxα,βϕnα,β}4(α+1)(α+4)!(β+1)α+1+NS(α+β+2){Vxα,βχnα,β}4(α+1)(α+2)!(β+1)α+1,(1.7) where for sufficiently smooth functions y(x),1x1, (1.8) Lxα,βy(x)=1(x1)α(x+1)βDx{(x1)α+1(x+1)β+1Dxy(x)},Txα,βy(x)=x1(x+1)βDxα+2{(x+1)α+β+2Dxα+2[(x1)α+1y(x)]},Uxα,βy(x)={Ux,1α,β+Ux,2α,β+Ux,3α,β}y(x) withUx,1α,βy(x)=(α+2)(x1)2(x+1)βDxα+4{(x+1)α+β+4Dxα+4[(x1)α+2y(x)]},Ux,2α,βy(x)=(α+1)(α+4)x1(x+1)βDxα+3{ψ1α,β(x)Dxα+3[(x1)α+1y(x)]},Ux,3α,βy(x)=2(α+1)(α+3)(α+4)(x+1)βDxα+2{ψ2α,β(x)Dxα+2[(x1)αy(x)]}, whereψ1α,β(x)=(x+1)α+β+3[2(α+2)β(x1)],ψ2α,β(x)=(x+1)α+β+2[4(α+2)+(αβ+2)(x1)],(1.8) and (1.9) Vxα,βy(x)=j=0α+2(α+3j)jVx,jα,βy(x)j!(j+1)!(j+α+3)(β+1)jwithVx,jα,βy(x)=x1(x+1)βDxj+α+3{ψ3,jα,β(x)Dxj+α+3[(x1)α+1y(x)]},0jα+2,whereψ3,jα,β(x)=(x+1)j+α+β+3(x1)j[x12(α+2j)(j+α+3)(α+2)(j+β+1)].(1.9) Throughout, Dxi(Dx)i,iN, denotes an i-fold differentiation with respect to x. Furthermore, the components of the eigenvalues λnα,β,N,S=λnα,β+Nτnα,β(α+2)!(β+1)α+1+Sϕnα,β4(α+1)(α+4)!(β+1)α+1+NS(α+β+2)χnα,β4(α+1)(α+2)!(β+1)α+1are given, for nN0, by (1.10) λnα,β=n(n+α+β+1),τnα,β=(n)α+2(n+β)α+2,ϕnα,β=(n1)α+3(n+β)α+3[(α+2)(n1)(n+α+β+2)+2β],χnα,β=j=0min(n2,α+2)(α+3j)j(n1j)j+α+3(n+β)j+α+3j!(j+1)!(j+α+3)(β+1)j=(n1)α+3(n+β)α+3α+34F3(2n,α2,α+3,n+α+β+32,α+4,β+1;1).(1.10)

Proposition 1.2

[Citation6, Theorem 3.1]

Let αN0,β>1,N,S0. The Jacobi-Sobolev differential operator Lxα,β,N,S is symmetric with respect to the inner product (Equation1.1), i.e. (1.11) (Lxα,β,N,Sf,g)w(α,β,N,S)=(f,Lxα,β,N,Sg)w(α,β,N,S),f,gC(4α+10)[1,1].(1.11)

One aim of this paper is to reveal a close relationship between the Jacobi-Sobolev polynomials (Equation1.4)–(Equation1.5) and both the Laguerre-Sobolev polynomials {Lnα,N,S(x)}n=0 on 0x<, see [Citation9,Citation10], and the Gegenbauer-Sobolev polynomials {Gnα,N,S(x)}n=0 on 1x1. These latter polynomials have been introduced in 1989 by H. Bavinck and H.G. Meijer [Citation11] in a form similar to (Equation1.4), see Proposition 3.1, and may be considered as a prototype within the wider class of symmetric Sobolev-type polynomials [Citation12,Citation13]. Investigations of Fourier expansions into Gegenbauer-Sobolev polynomials and other interesting features of the polynomials can be found, e.g. in [Citation14–17].

For any α>1,N,S0, the two polynomial systems in question are orthogonal with regard to the inner products (1.12) (f,g)w(α,N,S)=(f,g)w(α)+Nf(0)g(0)+Sf(0)g(0),(1.12) (1.13) (f,g)ω(α,N,S)=(f,g)w(α,α)+N[f(1)g(1)+f(1)g(1)]+S[f(1)g(1)+f(1)g(1)],(1.13) respectively. On the right-hand side of (Equation1.12), the scalar product (f,g)w(α)=0f(x)g(x)wα(x)dx,wα(x):=1Γ(α+1)exxα,is associated with the classical Laguerre polynomials (1.14) Lnα(x)=(α+1)nn!Rnα(x),Rnα(x):=1F1(n;α+1;x),0x<,nN0,(1.14) while the scalar product on the right-hand side of (Equation1.13) belongs to the particular case α=β of the Jacobi polynomials known as the Gegenbauer (or ultraspherical) polynomials, cf. (Equation1.1)–(Equation1.3). Here, the corresponding weight function reduces to wα,α(x):=Γ(2α+2)(1x2)α22α+1Γ2(α+1)=Γ(α+3/2)(1x2)αΓ(1/2)Γ(α+1).The three polynomial systems of Jacobi-, Laguerre-, and Gegenbauer-Sobolev type extend the renowned Askey scheme of hypergeometric orthogonal polynomials, see e.g. [Citation18, Section 18]. In this scheme, the Jacobi and Laguerre polynomials are linked to each other via the confluent limit relation [Citation19, 10.12(35)], (1.15) Pnα,β(12xβ)=(α+1)nn!2F1(n,n+α+β+1;α+1;xβ)βLnα(x).(1.15) Moreover, the (normalized) Jacobi polynomials with second parameter β=±12 are closely related to the (normalized) Gegenbauer polynomials of even and odd degrees, respectively. Indeed, the quadratic transformations of the hypergeometric function [Citation19, 2.11(10)(13)] yield, for any 0x1, (1.16) Rnα,1/2(2x21)=2F1(n,n+α+12;α+1;1x2)=2F1(2n,2n+2α+1;α+1;1x2)=R2nα,α(x),(1.16) (1.17) xRnα,1/2(2x21)=x2F1(n,n+α+32;α+1;1x2)=2F1(2n1,2n+2α+2;α+1;1x2)=R2n+1α,α(x).(1.17) So it is natural to examine to which extent these relationships carry over to the wider classes of Sobolev type polynomials. But while appropriate generalizations of the formulas (Equation1.15)–(Equation1.17) are known already for the subclasses N>0, S = 0, often called Bochner-Krall polynomials [Citation20,Citation21], it requires some more effort to control the impact of all four components of the polynomials (Equation1.4)–(Equation1.5) for general N0,S>0.

The first goal of this paper is to provide a new confluent limiting process, by means of which the Jacobi-Sobolev Equations (Equation1.6)–(Equation1.10) reduces to the recently established differential Equations (Equation2.4)–(Equation2.5) being satisfied by the Laguerre-Sobolev polynomials [Citation10, Theorem 2.1]. This result clearly illustrates how the various parts of the two differential equations fit together nicely.

As our primary result we then establish a new, quite elementary representation of the differential equation for the Gegenbauer-Sobolev polynomials on 1x1. As has been shown by Bavinck [Citation12] and in joint work with J. Koekoek [Citation13], the Gegenbauer-Sobolev polynomials arise as eigenfunctions of a differential operator of finite order 4α+10, as long as αN0. With the freedom of choosing certain values for the lowest eigenvalues, this operator proved to be unique. When written in the form (1.18) Gxα,N,S=Lxα,α+N2Mxα(α+2)(2α+2)!+SRxα2(α+1)4(2α+2)!+NS2(2α+3)Sxα(α+1)2(2α+2)!,(1.18) it includes the Gegenbauer differential operator Lxα,α=(x21Dx2+2(α+1)xDx, cf. (Equation1.8) for α=β. Moreover, the other three operators are given in [Citation12] as expansions in powers of Dx, as well, (1.19) Mxαj=02α+4mjα(x)Dxj,Rxαj=02α+8rjα(x)Dxj,Sxαj=04α+10sjα(x)Dxj,(1.19) but, unfortunately, the coefficient functions mjα(x),rjα(x),sjα(x) turned out to be so involved, that only those with highest indices simplified to (1.20) m2α+4α(x)=(x21)α+2,r2α+8α(x)=(α+2)(x21)α+4,s4α+10α(x)=2(x21)2α+5(2α+6)!.(1.20) The key of our approach to new representations of the components Mxα,Rxα and Sxα is to observe that the relationship (Equation1.16) between the Jacobi polynomials with parameter β=12 and the Gegenbauer polynomials of even degree can be generalized to a quadratic transformation resulting in the Gegenbauer-Sobolev polynomials G2nα,N,S(x),nN0. Applying the same transformation to the corresponding Jacobi-Sobolev equation we are then able to determine the Gegenbauer-Sobolev equation first for polynomials of even degree, and then, due to the uniqueness of the differential operator, in general.

The paper is organized as follows. In Section 2, we determine the limit relation between the Jacobi-Sobolev and Laguerre-Sobolev polynomials as β, see Proposition 2.2. Considering each of their four components separately, the originally fixed parameter S has first to be replaced by S(β)=(2/β)2S,β>0. Applying now the same substitution to the Jacobi-Sobolev differential operator Lxα,β,N,S(β) as well as to its eigenvalues λnα,β,N,S(β), they both tend, in the limit, to the respective quantities of the Laguerre-Sobolev equation, see Theorem 2.4. Moreover, the symmetry relation (Equation1.11) of the Jacobi-Sobolev differential operator corresponds to the symmetry of the Laguerre-Sobolev operator stated in Proposition 2.5.

In Section 3 we introduce the Gegenbauer-Sobolev polynomials in Proposition 3.1 and show how the polynomials of even degree are related to the Jacobi-Sobolev polynomials with particularly chosen parameters α,β=12,2N,25S, see Proposition 3.2. Furthermore, such a relationship is proved to hold between the eigenvalues of the particular Jacobi-Sobolev operator and those of the operator Gxα,N,S, suitably denoted by (1.21) γnα,N,S=λnα,α+N2μnα(α+2)(2α+2)!+Sρnα2(α+1)4(2α+2)!+NS2(2α+3)σnα(α+1)2(2α+2)!,(1.21) see Proposition 3.4. Finally, the new representation of Gxα,N,S is established in Theorem 3.5.

2. Relationship between the Jacobi-Sobolev and Laguerre-Sobolev equations

In [Citation10, (1.2)-(1.3)], we defined the Laguerre-Sobolev polynomials {Lnα,N,S(x)}n=0 as follows.

Proposition 2.1

Let α>1,N,S0. In terms of the Laguerre polynomials (Equation1.14), the Laguerre-Sobolev polynomials are given by (2.1) Lnα,N,S(x)=Lnα(x)+NTnα(x)+SUnα(x)+NSVnα(x),0x<,nN0,(2.1) where, T0α(x)=0,Unα(x)=Vnα(x)=0 for n1, and for higher values of n, (2.2) Tnα(x)=(α+2)n1n!xLn1α+2(x),Unα(x)=Un,1α(x)+Un,2α(x)+Un,3α(x)withUn,1α(x)=(α+3)n2x2Ln2α+4(x)(α+1)(α+3)(n1)!,Un,2α(x)=(α+2)n1xLn1α+2(x)(α+1)(α+3)(n2)!,Un,3α(x)=(α+3)n1Lnα(x)(α+1)(α+3)(n2)!,Vnα(x)=(α+3)n2(α+4)n2(α+1)(n1)!n!x2Ln2α+4(x).(2.2)

The polynomials (Equation2.1)–(Equation2.2) can be linked to the Jacobi-Sobolev polynomials by a generalization of formula (Equation1.15), where the parameter S now depends on the Jacobi parameter β.

Proposition 2.2

Let α>1,N,S0,0x<, and S(β)=(2/β)2S,β>x. Then the Jacobi-Sobolev polynomials turn into the Laguerre-Sobolev polynomials for all nN0 by virtue of the limiting process (2.3) limβPnα,β,N,S(β)(12xβ)=limβ{Pnα,β(ξ)+NTnα,β(ξ)+4Sβ2Unα,β(ξ)+4NSβ2Vnα,β(ξ)}|ξ=12xβ=Lnα,N,S(x).(2.3)

Proof.

While the particular case S = 0 has been stated in [Citation22, (4.8)], we showed in [Citation23, (4.1),(4.5)], that a similar limit relationship holds for the Tn and Uncomponents, as well. Finally, the Vn-components are related to each other by S(β)Vnα,β(12xβ)=4Sβ2(α+3)n2(α+4)n2(α+β+2)n(α+β+2)n+14(α+1)(n1)!n!(β+1)n2(β+1)n1(xβ)2Pn2α+4,β(12xβ)βS(α+3)n2(α+4)n2(α+1)(n1)!n!x2Ln2α+4(x)=SVnα(x)for any fixed n.

Next we provide the higher-order Laguerre-Sobolev differential equation in a form most parallel to the Jacobi-Sobolev equation in Theorem 1.1.

Proposition 2.3

[Citation23, Theorem 3.1]

For αN0,N,S0, the Laguerre-Sobolev polynomials yn(x)=Lnα,N,S(x),nN0, are the eigenfunctions of the equation (2.4) Lxα,N,Syn(x)+λnα,N,Syn(x)=0,0x<,(2.4) where the differential operator Lxα,N,S and its (negative) eigenvalues λnα,N,S split up into (2.5) Lxα,N,S+λnα,N,S={Lxα+λnα}+N{Txα+τnα}(α+2)!+S{Uxα+ϕnα}(α+1)(α+4)!+NS({Vxα+χnα}(α+1)(α+2)!.(2.5) Here, for sufficiently smooth functions y(x),0x<, Lxαy(x)=exxxDx[exxα+1Dxy(x)]=[xDx2+(α+1x)Dx]y(x),Txαy(x)=(1)α+1exxDxα+2{exDxα+2[xα+1y(x)]},Uxαy(x)={Ux,1α+Ux,2α+Ux,3α}y(x)withUx,1αy(x)=(1)α+1(α+2)exx2Dxα+4{exDxα+4[xα+2y(x)]},Ux,2αy(x)=(1)α+1(α+1)(α+4)exxDxα+3{ex(x+α+2)Dxα+3[xα+1y(x)]},Ux,3αy(x)=(1)α(α+1)(α+3)(α+4)exDxα+2{ex(x+2α+4)Dxα+2[xαy(x)]},Vxαy(x)=j=0α+2(α+3j)j(1)α+jVx,jαy(x)j!(j+1)!(j+α+3)withVx,jαy(x)=exxDxα+3+j{exxj[x+(α+2j)(α+3+j)α+2]Dxα+3+j[xα+1y(x)]}.Furthermore, the components of the eigenvalues are given by (2.6) λnα=n,τnα=(n)α+2,ϕnα=(α+2)(n2)α+4+(α+4)(n1)α+3=(n1)α+3[(α+2)(n1)+2],χnα=j=0min(n2,α+2)(α+3j)j(n1j)j+α+3j!(j+1)!(j+α+3)=(n1)α+3α+33F2(2n,α2,α+32,α+4;1).(2.6)

As suggested by the limit relation (Equation2.3), the Jacobi-Sobolev and Laguerre-Sobolev equations are closely related to each other, as well. In fact, after dividing Equation (Equation1.6) by the parameter β, we obtain our first main result.

Theorem 2.4

Let αN0,N,S0,0x<, and S(β)=(2/β)2S,β>x. For all nN0, there holds (2.7) limβ1β{Lξα,β,N,S(β)λnα,β,N,S(β)}Pnα,β,N,S(β)(ξ)|ξ=12x/β={Lxα,N,S+λnα,N,S}Lnα,N,S(x).(2.7)

Proof.

For the particular case N = 0 see [Citation23, Theorem 4.3,(4.14)]. The relationship between the eigenvalues, i.e. limβλnα,N,S(β)/β=λnα,N,S, follows by observing that the components in (Equation1.10) tend to those in (Equation2.6) by means of 1βλnα,β=n(n+α+β+1)ββn=λnα,Nβτnα,β(α+2)!(β+1)α+1=Nβ(n)α+2(n+β)α+2(α+2)!(β+1)α+1βN(n)α+2(α+2)!=Nτnα(α+2)!,S(β)βϕnα,β4(α+1)(α+4)!(β+1)α+1=S(n1)α+3(n+β)α+3[(α+2)(n1)(n+α+β+2)+2β]β3(α+1)(α+4)!(β+1)α+1βS(n1)α+3[(α+2)(n1)+2](α+1)(α+4)!=Sϕnα(α+1)(α+4)!,NS(β)β(α+β+2)χnα,β4(α+1)(α+2)!(β+1)α+1=NS(α+β+2)(n1)α+3(n+β)α+3β3(α+1)(α+3)!(β+1)α+14F3(2n,α2,α+3,n+α+β+32,α+4,β+1;1)βNS(n1)α+3(α+1)(α+3)!3F2(2n,α2,α+32,α+4;1)=NSχnα(α+1)(α+2)!.Similarly, we consider the four components of the expression Lξα,β,N,S(β)Pnα,β,N,S(β)(ξ), separately. In view of the substitution ξ=12x/β, each differentiation Dξ can formally be replaced by (β/2)Dx. So, by invoking the limit relation (Equation2.3), we achieve 1βLξα,βPnα,β,N,S(β)(ξ)|ξ=12x/β={[4xβ{2xβ}2]β4Dx2+[2α+2(α+β+2)2xβ]12Dx}Pnα,β,N,S(β)(12xβ)β{xDx2+(α+1x)Dx}Lnα,N,S(x)=LξαLnα,N,S(x),NβTξα,βPnα,β,N,S(β)(ξ)(β+1)α+1|ξ=12x/β=N2xβ2(β+1)α+1(22x/β)β(β2Dx)α+2×{(22xβ)α+β+2(β2Dx)α+2[(2xβ)α+1Pnα,β,N,S(β)(12xβ)]}βN(1)α+1exxDxα+2{exDxα+2[xα+1Lnα,N,S(x)]}=NTxαLnα,N,S(x).Furthermore, the three components of the operator Uξα,β given in (1.9), yield S(β)βUξ,1α,βPnα,β,N,S(β)(ξ)4(β+1)α+1|ξ=12x/β=S(α+2)β3(β+1)α+1(2xβ)2(22xβ)β(β2)2α+8Dxα+4{(22xβ)α+β+4Dxα+4[(2xβ)α+2Pnα,β,N,S(β)(12xβ)]}βS(1)α+1(α+2)exx2Dxα+4{exDxα+4[xα+2Lnα,N,S(x)]}=SUx,1αLnα,N,S(x),and, analogously, S(β)βUξ,2α,βPnα,β,N,S(β)(ξ)4(β+1)α+1|ξ=12x/ββS(1)α+1(α+1)(α+4)exx×Dxα+3{ex(x+α+2)Dxα+3[xα+1Lnα,N,S(x)]}=SUx,2αLnα,N,S(x),S(β)βUξ,3α,βPnα,β,N,S(β)(ξ)4(β+1)α+1|ξ=12x/ββS(1)α(α+1)(α+3)(α+4)ex×Dxα+2{ex(x+2α+4)Dxα+2[xαLnα,N,S(x)]}=SUx,3αLnα,N,S(x).Finally, by definition (Equation1.9), we obtain NS(β)β(α+β+2)Vξα,βPnα,β,N,S(β)(ξ)4(β+1)α+1|ξ=12x/β=NS(α+β+2)βα+4xβ4(β+1)α+1(1x/β)βj=0α+2(α+3j)jβ2j+122jαβ4j!(j+1)!(j+α+3)(β+1)j×Dxα+3+j{ψ3,jα,β(12xβ)Dxα+3+j[(x)α+1Pnα,β,N,S(β)(12xβ)]}βNSexxj=0α+2(α+3j)j(1)α+jj!(j+1)!(j+α+3)Dxα+3+j{exxj(α+2j)(α+3+j)α+2[x+(α+2j)(α+3+j)α+2]Dxα+3+j[xα+1Lnα,N,S(x)]}=NSVxαLnα,N,S(x),since β2j+1(β+1)j22j+α+β+4ψ3,jα,β(12xβ)=β2j+1(β+1)j22j+α+β+4(22xβ)j+α+β+3(2xβ)j[2xβ2(α+2j)(α+3+j)(α+2)(j+β+1)]β(1)j+1exxj[x+(α+2j)(α+3+j)α+2].Altogether, this settles the proof of identity (Equation2.7) in Theorem 2.4.

By applying Proposition 1.2 to the particular Jacobi-Sobolev operator Lξα,β,N,S(β), we are able to confirm a similar feature of the Laguerre-Sobolev operator, as well.

Proposition 2.5

[Citation10, Theorem 3.1]

For αN0,N,S0, the Laguerre-Sobolev differential operator Lxα,N,S is symmetric with respect to the inner product (Equation1.12), i.e. (Lxα,N,SF,G)w(α,N,S)=(F,Lxα,N,SG)w(α,N,S),F,GC(4α+10)[0,).

3. A new representation of the differential equation for the Gegenbauer-Sobolev polynomials

According to [Citation12, Section 2], the Gegenbauer-Sobolev polynomials may be represented in terms of the classical Gegenbauer polynomials {Pnα,α)(x)}n=0 as follows.

Proposition 3.1

Let α>1,N,S0. For nN0,1x1, the orthogonal polynomials with respect to the inner product (Equation1.13) are given by (with the usual convention that Pnα,α(x)0 for n<0) Gnα,N,S(x)=Pnα,α(x)+NAnα(x)+SBnα(x)+NSCnα(x),whereAnα(x)=anα(1x24)Pn2α+2,α+2(x),anα=2(2α+3)nn!,Bnα(x)=bn,1α(1x24)2Pn4α+4,α+4(x)bn,2α(1x24)Pn2α+2,α+2(x)bn,3αPnα,α(x)withbn,1α=(n+2α+1)(2α+3)n+22(α+1)3(n1)!,bn,2α=(α+2)(n+2α+1)(2α+3)n+12(α+1)3(n1)(n3)!,bn,3α=(2α+3)n+12(α+1)3(n3)!,Cnα(x)=cnα(1x24)2Pn4α+4,α+4(x),cnα=(2α+3)n+2(2α+3)n(α+1)3(α+2)n!(n2)!.

The first task of this section is to find a formula linking the Jacobi-Sobolev polynomials (Equation1.4)–(Equation1.5) with parameter β=12 to the Gegenbauer-Sobolev polynomials of even degree by utilizing the quadratic transformation (Equation1.16) between their classical counterparts. To this end, we first normalize both sides as in (Equation1.3). Observing that 22nj(a)n(a+12)nj=(2a)2nj for j = 0, 1 and (1)n=n!, we get P^nα,12,N,S(x)=n!Pnα,12,N,S(x)(α+1)n=Rnα,12(x)+NT^nα,12(x)+SU^nα,12(x)+NSV^nα,12(x),where T^nα,12(x)=t^nα,12(1x2)Rn1α+2,12(x),t^nα,12=n!(α+3)n1(α+1)n(n1)!tnα,12=(2α+3)2n4(α+1)2(2n2)!,U^nα,12(x)=u^n,1α,12(1x2)2Rn2α+4,12(x)u^n,2α,12(1x2)Rn1α+2,12(x)u^n,3α,12Rnα,12(x),u^n,1α,12=n!(α+5)n2(α+1)n(n2)!un,1α,12=2n(2n+α+1)(2α+3)2n+2210(α+1)3(α+1)4(2n4)!,u^n,2α,12=n!(α+3)n1(α+1)n(n1)!un,2α,12=2n(2n+α+1)(2α+3)2n+128(α+1)(α+1)3(2n3)!,u^n,3α,12=un,3α,12=(2α+3)2n+126(α+1)3(2n3)!,and V^nα,12(x)=v^nα,12(1x2)2Rn2α+4,12(x),v^nα,12=n!(α+5)n2(α+1)n(n2)!vnα,12=(2α+3)2n+2(2α+3)2n210(α+2)(α+1)3(α+1)4(2n2)!(2n4)!.On the other hand, G^nα,N,S(x)=n!Gnα,N,S(x)(α+1)n=Rnα,α(x)+NA^nα(x)+SB^nα(x)+NSC^nα(x),whereA^nα(x)=a^nα(1x24)Rn2α+2,α+2(x),a^nα=2(2α+3)n(α+1)2(n2)!,B^nα(x)=b^n,1α(1x24)2Rn4α+4,α+4(x)b^n,2α(1x24)Rn2α+2,α+2(x)b^n,3αRnα,α(x)withb^n,1α=n(n+2α+1)(2α+3)n+22(α+1)3(α+1)4(n4)!,b^n,2α=n(n+2α+1)(2α+3)n+12(α+1)(α+1)3(n3)!,b^n,3α=(2α+3)n+12(α+1)3(n3)!,C^nα(x)=c^nα(1x24)2Rn4α+4,α+4(x),c^nα=(2α+3)n+2(2α+3)n(α+2)(α+1)3(α+1)4(n2)!(n4)!.

Proposition 3.2

Let α>1,N,S0. For nN0,0x1, there holds (3.1) P^nα,12,2N,25S(2x21)={Rnα,12(ξ)+2NT^nα,12(ξ)+25SU^nα,12(ξ)+26NSV^nα,12(ξ)}|ξ=2x21=R2nα,α(x)+NA^2nα(x)+SB^2nα(x)+NSC^2nα(ξ)=G^2nα,N,S(x).(3.1)

Proof.

While Rnα,12(2x21)=R2nα,α(x) in view of (Equation1.16), it follows that T^nα,12(2x21)=t^nα,12(1x2)Rn1α+2,12(2x21)=12a^2nα(1x24)R2n2α+2,α+2(x)=12A^2nα(x),U^nα,12(2x21)=16u^n,1α,12(1x24)2R2n4α+4,α+4(x)4u^n,2α,12(1x24)R2n2α+2,α+2(x)u^n,3α,12R2nα,α(x)=125{b^2n,1α(1x24)2R2n4α+4,α+4(x)b^2n,2α(1x24)R2n2α+2,α+2(x)b^2n,3αR2nα,α(x)}=125B^2nα(x),V^nα,12(2x21)=126c^2nα(1x24)2R2n4α+4,α+4(x)=126C^2nα(x).Putting things together then yields identity (Equation3.1).

As stated in Section 1, the (normalized) Gegenbauer-Sobolev polynomials yn(x)=G^nα,N,S(x),nN0, satisfy a unique differential equation (3.2) Gxα,N,Syn(x)=γnα,N,Syn(x),(3.2) where the differential operator Gxα,N,S and its eigenvalues γnα,N,S are given as a linear combination of four terms stated in (Equation1.18) and (Equation1.21), respectively.

Proposition 3.3

Let αN0 and set μ1α=ρ1α=ρ2α=σ1α=σ2α=σ3α=0. The eigenvalues γnα,N,S possess the representation (Equation1.21) with λnα,α=n(n+2α+1),n1,μnα=(n1)2α+4,n2,ρnα=(α+2)(n3)2α+8+2(α+1)(α+4)(n2)2α+6=(n2)2α+6[(α+2)(n+2α+3)(n2)4],n3,σnα=(n3)2α+82(α+3)24F3(2n2,α1,n2+α+52,α+42,32,α+5;1)=(n2)2α+6α+34F3(2n2,α2,n2+α+52,α+32,12,α+4;1),n4.

Proof.

While λnα,α,nN0, are the eigenvalues of the classical Gegenbauer operator Lxα,α, the μnα,ρnα, and the first line of σnα coincide with the values stated in [Citation12, Section 5]. In order to verify the second identity of σnα, we make use of Whipple's transformation for terminating and balanced 4F3 hypergeometric functions with unit argument [Citation18, 16.4.14], i.e. 4F3(m,a,b,cd,e,f;1)=(ea)m(fa)m(e)m(f)m4F3(m,a,db,dcd,aem+1,afm+1;1)where a + b + cm + 1 = d + e + f. In fact, just choose m=n22,a=n2+α+52,b=α1,c=α+4,d=2,e=32,f=α+5.

Fortunately, there exists a relationship between the eigenvalues of the Jacobi-Sobolev and Gegenbauer-Sobolev equations, which corresponds to the identity (Equation3.1) of their eigenfunctions.

Proposition 3.4

For αN0,N,S0 let the eigenvalues λnα,12,N,S,nN0, be given as in (Equation1.7) with components (Equation1.10) for β=12. Then 4λnα,12,2N,25S=4λnα,12+N8τnα,12(α+2)!(12)α+1+S25ϕnα,12(α+1)(α+4)!(12)α+1+NS26(α+32)χnα,12(α+1)(α+2)!(12)α+1=λ2nα,α+N2μ2nα(α+2)(2α+2)!+Sρ2nα2(α+1)4(2α+2)!+NS2(2α+3)σ2nα(α+1)2(2α+2)!=γ2nα,N,S.

Proof.

It remains to observe that 4λnα,12=4n(n+α+12)=2n(2n+2α+1)=λ2nα,α,8τnα,12(α+2)!(12)α+1=8(n)α+2(n12)α+2(α+2)(1)α+1(12)α+1=2(2n1)2α+4(α+2)(2α+2)!=2μ2nα(α+2)(2α+2)!,25ϕnα,12(α+1)(α+4)!(12)α+1=25(n1)α+3(n12)α+3[(α+2)(n1)(n+α+32)1](α+1)4(1)α+1(12)α+1=(2n2)2α+6[(α+2)(2n2)(2n+2α+3)4]2(α+1)4(2α+2)!=ρ2nα2(α+1)4(2α+2)!,26(α+32)χnα,12(α+1)(α+2)!(12)α+1=25(2α+3)(n1)α+3(n12)α+3(α+1)3(1)α+1(12)α+14F3(2n,α2,n+α+52,α+32,12,α+4;1)=2(2α+3)(2n2)2α+6(α+1)3(2α+2)!4F3(;1)=2(2α+3)σ2nα(α+1)2(2α+2)!.The assertion then follows by definition (Equation1.21).

As suggested by Propositions 3.2 and 3.4, we apply both the transformation of the argument and the modification of the parameters, which occur on the left-hand side of (Equation3.1), to the Jacobi-Sobolev differential operator defined in Proposition 1.1.

Theorem 3.5

For αN0,N,S0, let a differential operator Gxα,N,S be given as in (Equation1.18), where its components are defined, for sufficiently smooth functions y(x),1x1, by (3.3) Lxα,αy(x)=(x21)αDx[(x21)α+1Dxy(x)]Mxα(x)=(x21)Dx2α+4[(x21)α+1y(x)],Rxαy(x)=(Rx,1α+Rx,2α+Rx,3α)y(x)withRx,1αy(x)=(α+2)(x21)2Dx2α+8[(x21)α+2y(x)],Rx,2αy(x)=2(α+1)(α+4)(x21)×{(2α+3)Dx2α+6[(x21)α+1y(x)]+xDx2α+6[x(x21)α+1y(x)]},Rx,3αy(x)=8(α+1)(α+3)(α+4)×{(2α+3)Dx2α+4[(x21)αy(x)]+(2α+5)xDx2α+4[x(x21)αy(x)]},(3.3) and, setting δx:=1xDx, (3.4) Sxαy(x)=j=0α+2(α+3j)jSx,jαy(x)(2j)!(j+1)!(j+α+3)withSx,jαy(x)=(x21)xδxj+α+3{ψjα(x)δxj+α+3[(x21)α+1y(x)]},ψjα(x)=x2j+2α+5(x21)j[x212(α+2j)(α+3+j)(α+2)(2j+1)].(3.4) (a) Choosing for y(ξ),1ξ1, the Jacobi-Sobolev polynomial P^mα,12,2N,25S(ξ), mN0, so that y~(x):=y(2x21),0x1, becomes the Gegenbauer-Sobolev polynomial G^2mα,N,S(x) by Proposition 3.2, there holds 4Lξα,12,2N,25Sy(ξ)|ξ=2x21=4{Lξα,12+2NTξα,12(α+2)!(12)α+1++25SUξα,124(α+1)(α+4)!(12)α+1+26NS(α+32)Vξα,124(α+1)(α+2!(12)α+1}y(ξ)|ξ=2x21={Gxα+N2Mxα(α+2)(2α+2)!+SRxα2(α+1)4(2α+2)!+NS2(2α+3)Sxα(α+1)2(2α+2)!}y~(x)=Gxα,N,Sy~(x).(b) For all nN0, the Gegenbauer-Sobolev polynomials Gnα,N,S(x) are, regardless of their normalization, the eigenfunctions of the differential operator Gxα,N,S. In particular, the components Mxα,Rxα,Sxα in Bavinck's representation (Equation1.19) of the operator coincide with those defined in (Equation3.3)–(Equation3.4). When expanding the new expressions into finite power series over Dxi, the highest coefficient functions agree with those in (Equation1.20).

Proof.

(a) We separately consider the four terms of the Jacobi-Sobolev operator Lξα,12,2N,25S. Substituting ξ=x21, we can formally replace each differentiation in the occurring differential expressions by Dξ=14xDx=:14δx. First of all, this yields the well known identity 4Lξα,12y(ξ)=4Dξ[(ξ1)α+1(ξ+1)12Dξy(ξ)](ξ1)α(ξ+1)12=2α12Dx[(x21)α+1Dxy~(x)]x2α12(x21)α(x2)12=Dx[(x21)α+1Dxy~(x)](x21)α=Lxα,αy~(x).Concerning the other three components, we frequently make use of

Lemma 3.6

[Citation24, (6.6)]

For all mN0 and admissible functions ϕ(x), δxm[x2m+1δxm+1ϕ(x)]=Dx2m+1ϕ(x),xδxm+1[x2m+1δxm+1ϕ(x)]=Dx2m+2ϕ(x),xδxm+1[x2m+3δxm+1ϕ(x)]=x2Dx2m+2ϕ(x)+2(m+1)xDx2m+1ϕ(x)=xDx2m+2[(x)].

Hence, 8Tξα,12y(ξ)(α+2)!(12)α+1=8(ξ1)(ξ+1)12(α+2)!(12)α+1Dξα+2{(ξ+1)α+32Dξα+2[(ξ1)α+1y(ξ)]}=2(x21)22α+2(α+2)!(12)α+1xδxα+2{x2α+3δxα+2[(x21)α+1y~(x)]}=2(x21)Dx2α+4[(x21)α+1y~(x)](α+2)(2α+2)!=2Mxαy~(x)(α+2)(2α+2)!.Next, the three parts of Uξα,12y(ξ) lead to 27Uξ,1α,12y(ξ)4(α+1)(α+4)!(12)α+1==25(α+2)(ξ1)2(ξ+1)12(α+1)(α+4)!(12)α+1Dξα+4{(ξ+1)α+72Dξα+4[(ξ1)α+2y(ξ)]}=(α+2)(x21)222α+3(α+1)4(1)α+1(12)α+1xδxα+4{x2α+7δxα+4[(x21)α+2y~(x)]}=(α+2)(x21)22(α+1)4(2α+2)!Dx2α+8[(x21)α+2y~(x)]=Rx,1αy~(x)2(α+1)4(2α+2)!,27Uξ,2α,12y(ξ)4(α+1)(α+4)!(12)α+1=25(ξ1)(ξ+1)12(α+3)!(12)α+1Dξα+3{ψ1α,12(ξ)Dξα+3[(ξ1)α+1y(ξ)]}=(x21)xδxα+3{x2α+5[2α+3+x2]δxα+3[(x21)α+1y~(x)]}22α+2(α+2)2(1)α+1(12)α+1=(x21){(2α+3)Dx2α+6[(x21)α+1y~(x)]+xDx2α+6[x(x21)α+1y~(x)]}(α+2)2(2α+2)!=Rx,2αy~(x)2(α+1)4(2α+2)!,and 27Uξ,3α,12y(ξ)4(α+1)(α+4)!(12)α+1=26(ξ+1)12(α+2)!(12)α+1Dξα+2{ψ2α,12(ξ)Dξα+2[(ξ1)αy(ξ)]}=xδxα+2{x2α+3[2α+3+(2α+5)x2]δxα+2[(x21)αy~(x)]}22α(α+2)(1)α+1(12)α+1=4{(2α+3)Dx2α+4[(x21)αy~(x)]+(2α+5)xDx2α+4[x(x21)αy~(x)]}(α+2)(2α+2)!=Rx,3αy~(x)2(α+1)4(2α+2)!.Finally, we get 28(α+32)Vξα,12y(ξ)4(α+1)(α+2)!(12)α+1=2(2α+3)(α+1)2(2α+2)!j=0α+2(α+3j)j22j+2α+6Vx,jα,12y(ξ)(2j)!(j+1)!(j+α+3)=2(2α+3)Sxαy~(x)(α+1)2(2α+2)!,since, by the definitions of ψ3,jα,12(x) in (Equation1.9) and of ψjα(x) in (Equation3.4), 22j+2α+6Vξ,jα,12y(ξ)=22j+2α+6(ξ1)(ξ+1)12Dξj+α+3{ψ3,jα,12(ξ)Dξj+α+3[(ξ1)α+1y(ξ)]}=(x21)xδxj+α+3{ψjα(x)δxj+α+3[(x21)α+1y~(x)]}=Sx,jαy~(x).(b) Given the Jacobi-Sobolev Equation (Equation1.6), it follows by part (a) and Proposition 3.4 that the Gegenbauer-Sobolev polynomials of even degree satisfy the differential Equation (Equation3.2) for 0x1, i.e. 0=4{Lξα,12,2N,25Sλmα,12,2N,25S}P^mα,12,2N,25S(ξ)|ξ=2x21={Gxα,N,Sγ2mα,N,S}G^2mα,N,S(x).Clearly, the latter equation can be extended to the whole interval 1x1, and since Gxα,N,S is independent of the index mN0, the operator must coincide with Bavinck's unique representation based on the components (Equation1.19). Concerning their highest coefficients, it readily follows by definition (Equation3.3)–(Equation3.4) that Mxαy(x)=(x21)Dx2α+4[(x21)α+1y(x)]=(x21)α+2Dx2α+4y(x)+j=12α+3mjα(x)Dxjy(x),Rxαy(x)=(α+2)(x21)2Dx2α+8[(x21)α+2y(x)]+(Rx,2α+Rx,3α)y(x)=(α+2)(x21)α+4Dx2α+8y(x)+j=12α+7rjα(x)Dxjy(x),Sxαy(x)=2Sx,α+2αy(x)(2α+6)!+j=0α+1(α+3j)jSx,jαy(x)(2j)!(j+1)!(j+α+3)=2(x21)x(2α+6)!(1xDx)2α+5×{x4α+9(x2)α+3(1xDx)2α+5[(x21)α+1y(x)]}+lower terms=2(x21)2α+5(2α+6)!Dx4α+10y(x)+j=14α+9sjα(x)Dxjy(x).This confirms the values in (Equation1.20) and concludes the proof of Theorem 3.5.

Remark 3.7

(a) The particular case S = 0 of Theorem 3.5 has been treated already in [Citation25]. There we proved that the ultraspherical-type polynomials Gnα,N,0(x)=Pnα,α(x)+NAnα(x),nN0, satisfy the differential equation {Gxα,N,0γnα,N,0}Gnα,N,0(x)={[Lxα,αn(n+2α+1)]+N2[Mxα(n1)2α+4](α+2)(2α+2)!}Gnα,N,0(x)=0on 1x1 with Lxα,α,Mxα being given in (Equation3.3). Of course, the new representations (3.3)-(Equation3.4) of the operators Rxα,Sxα related to the additional 'Sobolev parameter' S>0, are quite sophisticated. Nevertheless, they can easily be implemented in a symbolic computer programme and so are accessible for further applications. Indeed, we checked the Gegenbauer-Sobolev equation in Theorem 3.5 via MAPLE for both even and odd Gegenbauer-Sobolev polynomials by considering, e.g. the cases (n,α)=(4,0),(5,1) and (7,1) with arbitrary N,S0.

(b) Though not required in the proof of Theorem 3.5, it would be worthwhile to find an extension of the quadratic transfomation (Equation1.17) for the Gegenbauer-Sobolev polynomials of odd degree. However, there seems to be no relationship as simple as identity (Equation3.1) in case of even polynomials.

Corollary 3.8

For αN0,N,S0, the Gegenbauer-Sobolev operator Gxα,N,S is symmetric with respect to the inner product (Equation1.13), i.e. (3.5) (Gxα,N,SF,G)ω(α,N,S)=(F,Gxα,N,SG)ω(α,N,S),F,GC(4α+10)[1,1].(3.5)

Proof.

Since the Gegenbauer-Sobolev polynomials are the eigenfunctions of Gxα,N,S with different eigenvalues, the symmetry relation (Equation3.5) is an immediate consequence of the fact that they form an orthogonal polynomial system which is dense in the corresponding inner product space, cf. [Citation14]. Especially for even functions F, G, this result can also be deduced from the symmetry property (Equation1.11) of the Jacobi-Sobolev differential operator with parameters α,β=12,2N,25S.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Marcellán F, Xu Y. On Sobolev orthogonal polynomials. Expo Math. 2015;33:308–352. doi: 10.1016/j.exmath.2014.10.002
  • Alfaro M, Marcellán F, Rezola ML. Orthogonal polynomials on Sobolev spaces: old and new directions. J Comput Appl Math. 1993;48:113–131. doi: 10.1016/0377-0427(93)90318-6
  • Durán AJ, De la Iglesia MD. Differential equations for discrete Jacobi-Sobolev orthogonal polynomials. J Spectr Theory. 2018;8:191–234. doi: 10.4171/jst
  • Everitt WN, Kwon KH, Littlejohn LL, et al. Orthogonal polynomial solutions of linear ordinary differential equations. J Comput Appl Math. 2001;133:85–109. doi: 10.1016/S0377-0427(00)00636-1
  • Mañas-Mañas JF, Moreno-Balcázar JJ, Wellman R. Eigenvalue problem for discrete Jacobi-Sobolev orthogonal polynomials. Mathematics. 2020;8:182,19.
  • Markett C. The differential equation for Jacobi-Sobolev polynomials with two linear perturbations. J Approx Theory. 2022;280:105782. doi: 10.1016/j.jat.2022.105782
  • Koekoek J, Koekoek R. Differential equations for generalized Jacobi polynomials. J Comput Appl Math. 2000;126:1–31. doi: 10.1016/S0377-0427(99)00338-6
  • Bavinck H. Differential operators having Sobolev-type Jacobi polynomials as eigenfunctions. J Comput Appl Math. 2003;151:271-–295. doi: 10.1016/S0377-0427(02)00810-5
  • Bavinck H. Differential operators having Sobolev-Laguerre polynomials as eigenfunctions: new developments. J Comput Appl Math. 2001;133:183–193. doi: 10.1016/S0377-0427(00)00642-7
  • Markett C. On the differential equation for the Laguerre-Sobolev polynomials. J Approx Theory. 2019;247:48–67. doi: 10.1016/j.jat.2019.07.007
  • Bavinck H, Meijer HG. Orthogonal polynomials with respect to a symmetric inner product involving derivatives. Appl Anal. 1989;33:103–117. doi: 10.1080/00036818908839864
  • Bavinck H. Differential operators having Sobolev-type Gegenbauer polynomials as eigenfunctions. J Comput Appl Math. 2000;118:23–42. doi: 10.1016/S0377-0427(00)00279-X
  • Bavinck H, Koekoek J. Differential operators having symmetric orthogonal polynomials as eigenfunctions. J Comput Appl Math. 1999;106:369–393. doi: 10.1016/S0377-0427(99)00094-1
  • Ciaurri Ó, Mínguez Ceniceros J. Fourier series of Gegenbauer-Sobolev polynomials. SIGMA. 2018;14:11.
  • Fejzullahu BX, Marcellán F. On convergence and divergence of Fourier expansions with respect to some Gegenbauer-Sobolev type inner product. Commun Anal Theory Contin Fract. 2008/09;16:1-–11.
  • Fejzullahu BX, Marcellán F. A Cohen type inequality for Gegenbauer-Sobolev expansions. Rocky Mountain J Math. 2013;213:135–148.
  • Foulquié Moreno A, Marcellán F, Osilenker BP. Estimates for polynomials with respect to some Gegenbauer-Sobolev type inner product. J Inequal Appl. 1999;3:101–119.
  • NIST Digital Library of Mathematical Functions. National Institute of Standards and Technology, U.S. Department of Commerce. Available from: https://dlmf.nist.gov.
  • Erdélyi A, Magnus W, Oberhettinger F, et al. Higher transcendental functions. New York (NY): McGraw-Hill; 1953.
  • Kwon KH, Littlejohn LL, Yoon GJ. Orthogonal polynomial solutions of spectral type differential equations: magnus' conjecture. J Approx Theory. 2001;112:189–215. doi: 10.1006/jath.2001.3586
  • Kwon KH, Littlejohn LL, Yoon GJ. Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions. J Math Anal Appl. 2006;324:285–303. doi: 10.1016/j.jmaa.2005.11.059
  • Koornwinder TH. Orthogonal polynomials with weight function (1−x)α(1+x)β+Mδ(x+1)+Nδ(x−1). Canad Math Bull. 1984;27(2):205-–214. doi: 10.4153/CMB-1984-030-7
  • Markett C. Symmetric differential operators for Sobolev orthogonal polynomials of Laguerre- and Jacobi-type. Integral Transforms Spec Funct. 2021;32: doi: 10.1080/10652469.2020.17676135–8,568–587.
  • Markett C. An elementary representation of the higher-order Jacobi-type differential equation. Indag Math. 2017;28:976–991. doi: 10.1016/j.indag.2017.06.015
  • Markett C. New representation and factorizations of the higher-order ultrapherical-type differential equation. J Math Anal Appl. 2015;421:244–259. doi: 10.1016/j.jmaa.2014.07.001