Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
312
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kantorovich-Stancu type (α,λ,s) - Bernstein operators and their approximation properties

, &
Pages 228-265 | Received 16 Aug 2023, Accepted 21 Mar 2024, Published online: 14 Apr 2024

ABSTRACT

In this study, we establish a new class of Kantorovich-Stancu type α,λ,sBernstein operators via an adaptation of Bézier bases which are formulated with the inclusion of the shape parameters λ1,1, α0,1, and a positive parameter s. First, we present a uniform convergence result for these operators and, subsequently, examine the convergence properties by utilizing the weighted B-statistical convergence notion. Furthermore, we estimate the rate of the weighted B-statistical convergence of these operators. We conclude our work by providing a numerical example with explanatory graphs to show their approximation behaviours.

1. Introduction

In the field of mathematical analysis, the Weierstrass Approximation Theorem (Weierstrass Citation1885) has immense significance since it states that any continuous function ξτ on a closed and bounded interval can be uniformly approximated on that interval by a sequence of polynomials pμτ within a bounded error. Consequently, there have been different approaches to the statement and the proof of the Weierstrass Approximation Theorem. In 1912, one of the most famous advances to prove this landmark theorem was implemented by Sergei N. Bernstein (Citation1912) via the so-called Bernstein polynomials. In order to achieve his goal, Bernstein (Citation1912) defined the following Bernstein operators

(1) Bμξ;τ=κ=0μbμ,κτξκμ,(1)

where τ0,1, μN and

(2) bμ,κτ=μκτκ1τμκ,s.t.bμ,κτ=0ifκ>μorκ<0,(2)

are the Bernstein basis functions. Bernstein-type operators have attracted great attention due to their invaluable traits listed below:

  1. They have explicit forms and operate competently for the functions which are well-defined for rational-valued variables.

  2. They possess numerous shape-preserving properties, such as linearity, monotonicity, endpoint interpolation, and convexity.

  3. These operators, along with their variations, are easy to manipulate in computer programs and very convenient to work with if the structure of the function is intricate.

  4. They have many crucial and impressive implementations in the fields of signal and image processes, solutions of differential and integral equations, robotics, and so on.

  5. Even though they satisfy the Korovkin theorem in the classical sense, they also fulfill the different versions of Korovkin theorems which utilize the summability methods and statistical type convergences since they are well connected with the theory of infinite matrices and summability.

Because of these traits mentioned above, there has been tremendous research done regarding the approximation and shape-preserving properties, along with many other aspects of the Bernstein operators and their variations in the last century. Two of the most notable variations of classical Bernstein operators (1.1) were introduced by Kantorovich and Stancu in (Citation1930) and (Stancu Citation1968), respectively. The operators defined by Kantorovich, denoted as Kμξ;τ, are an integral adaptation of operators in (1.1) and very convenient tools to approximate functions that are Riemann integrable on 0,1. The operators symbolized as Sμσ,ρξ;τ,which are inaugurated by Stancu, involve two real parameters σ and ρ with 0ρσ. The purpose here was to give more flexibility in modelling with the inclusion of parameters σ and ρ. One can find more information on these operators and the subsequent studies in papers (Cai et al. Citation2022; Ayman Mursaleen et al. Citation2023, Citation2024; Bărbosu Citation2004; Bustamante Citation2017; Cai et al. Citation2018; Milovanović et al. Citation2018; Nasiruzzaman et al. Citation2019; Mohiuddine and Özger Citation2020; Özger Citation2019, Citation2020; Özger et al. Citation2020, Citation2022; Kadak and Özger Citation2021; Aktuğlu et al. Citation2022; Ansari et al. Citation2022a, Citation2022b; Aslan Citation2022, Citation2023, Citation2024; Bodur et al. Citation2022; Savaş and Mursaleen Citation2023; Srivastava et al. Citation2021) (and references therein), respectively.

Likewise, the Bernstein basis functions given in (2) have also been modified in order to achieve improved results on the surface and curve modellings. The one variation that intrigued us the most is called Bézier bases which were constructed by Ye et al. in (Ye et al. Citation2010) with the inclusion of shape parameter λ[1,1]. In a similar fashion, Chen et al. (Chen et al. Citation2017) defined the α version of bases in (1.2) where α[0,1], and subsequently, Gezer et al. (Citation2022) constructed the blending-type (α,λ,s)-Bernstein operators by combining the shape parameters λ, α, and s, where s is a positive integer.

Gezer et al. defined the blending-type α,λ,sBernstein operators by employing the sample values of ξ on the interval 0,1. Inspired by their work, we define the Kantorovich-Stancu type α,λ,sBernstein operators ((α,λ,s)-BKSO) by taking into account the mean values of ξ in the intervals κ+ρμ+σ+1,κ+ρ+1μ+σ+1, where 0ρσ, instead of sample values of ξ. In this paper, we aim to investigate the approximation and convergence properties of (α,λ,s)-BKSO in the statistical sense. Moreover, we give an estimation of the rate of weighted B-statistical convergence and prove a Voronovskaja-type approximation theorem by a family of linear operators using the notion of weighted B-statistical convergence.

The manuscript’s organization is as follows: Section 2 summarizes the variations of Bernstein-type operators. Section 3 is devoted to the construction of (α,λ,s)-BKSO and the auxiliary results regarding their moments, while section 4 provides our main results about the convergence properties of (α,λ,s)-BKSO. Section 5 includes the explanatory figures, which show the approximation behaviour of (α,λ,s)-BKSO and concluding remarks on our findings.

2. Essential preliminaries

In this section, we present the established work from the literature for the readers who are not familiar with the definitions of α-Bernstein, λ-Bernstein, blending (α,λ,s)-Bernstein basis functions, and their corresponding operators. Firstly we note that the binomial coefficients are given by the formula

μκ=μ!κ!μκ!,0κμ,0,otherwise.

In (Chen et al. Citation2017), Chen et al. inaugurated a new type of operator, the so-called αBernstein operator, in the literature, which is given by

(3) Tμ,αξ;τ=κ=0μψμ,κατξκμ,(3)

where real number α is the shape parameter. For μ2, α,τ[0,1], and ξτC[0,1], the αBernstein basis is represented by ψ1,0ατ=1τ, ψ1,1ατ=τ and

ψμ,κατ=(1α)μ2κτ+(1α)μ2κ2(1τ)+αμκτ(1τ)τκ1(1τ)μκ1.

If one chooses α=1, then (3) reduces to the classical Bernstein operators given by (1). This implies that the αBernstein operator is more efficient than the classical Bernstein operator. There are a vast number of studies built on the αBernstein operators in the literature (see (Mohiuddine and Özger Citation2020; Aktuğlu et al. Citation2022; Chen et al. Citation2022) and references therein).

A decade ago, Ye et al. constructed the new Bézier bases with shape parameter λ[1,1] by

(4) b˜μ,κλ;τ=bμ,0τλμ+1bμ+1,1τ,κ=0,bμ,κτ+λμ2κ+1μ21bμ+1,κτμ2κ1μ21bμ+1,κ+1τ,κ=1,μ1,bμ,μτλμ+1bμ+1,μτ,κ=μ,(4)

where bμ,κτ are defined as in (2) (see (Ye et al. Citation2010)). Later on, Cai et al. (Citation2018) established the corresponding λBernstein operators as

(5) Bμ,λξ;τ=κ=0μb˜μ,κλ;τξκμ.(5)

Note that for λ=0, Bézier bases in (4) and λBernstein operators in (5) transform to the classical Bernstein bases and operators given by (2) and (1), respectively.

Next, we give the following lemma, which gives the moments of the λBernstein operators.

Lemma 1

([14]). For λBernstein operators, the following equalities hold true:

Bμ,λ1;τ=1;
Bμ,λt;τ=τ+λ12τ+τμ+11τμ+1μμ1;
Bμ,λt2;τ=τ2+τ1τμ+λ2τ4τ2+2τμ+1μμ1+τμ+1+1τμ+11μ2μ1;
Bμ,λt3;τ=τ3+3τ21τμ+2τ33τ2+τμ2+λ6τ3+6τμ+1μ2+3τ23τμ+1μμ1\break+9τ2+9τμ+1μ2μ1+4τ+4τμ+1μ3μ1+1τμ+11τμ+1μ+3μ3μ21;
Bμ,λt4;τ=τ4+6τ3τ4μ+7τ218τ3+11τ4μ2+τ7τ2+12τ36τ4μ3+λ6τ22τ38τ4+4τμ+1μ2+τ232τ3+16τ4+17τμ+1μ3+ττμ+1μ4\break+7τ27τμ+1μ2μ1+τ23τ2+22τμ+1μ3μ1+1τμ+1+τ1μ4μ1.

Recently, generalized blending-type α-Bernstein operators, which utilize shape parameters α and s, are constructed by Aktuğlu et al. in (Citation2022) as

(6) Lμα,sξ;τ=κ=0μ(1α)μsκsτκs+11τμκ\break+(1α)μsκτκ1τμsκ+1+αμκτκ1τμκξκμ(6)

forμs, and

(7) Lμα,sξ;τ=κ=0μμκτκ1τκξκμ,(7)

for μ<s, where α,τ[0,1], ξτC[0,1] and sZ+=1,2,. The choices of s=1 and s=2 in operators (6) and (7) result in the classical Bernstein operators and αBernstein operators given by (1) and (3), respectively.

Subsequently, in (Gezer et al. Citation2022) introduced the blending-type (α,λ,s)-Bernstein operators to the literature as follows:

(8) Lμ,λα,sξ;τ=κ=0μb˜μ,κα,sλ;τξκμ,(8)

where α[0,1], λ[1,1], s is a positive integer and

(9) b˜μ,κα,sλ;τ=b˜μ,κλ;τifμ<s,1ατb˜μs,κsλ;τ+1τb˜μs,κλ;τ+αb˜μ,κλ;τifμs,(9)

are the blending-type (α,λ,s)-Bernstein bases with b˜μ,κλ;τ defined as in (4). Note that Lμ,λα,sξ;τ reduces to the classical Bernstein operators if α=1 and λ=0, the αBernstein operators if λ=0 and s=2, the λBernstein operators if α=1 and s=1, and lastly the blending-type αBernstein operators if λ=0.

For the sake of more precise and straightforward computations, Gezer et al. reformulated the blending-type (α,λ,s)-Bernstein operators given in Equation (8) in the following manner.

Theorem 1

([23]). For any α[0,1], λ[1,1] and a positive integer s,

Lμ,λα,sξ;τ=Bμ,λξ;τifμ<s,1αBμ,λs,ξ;τ+αBμ,λξ;τifμs,
where
Bμ,λξ;τ=κ=0μbμ,κτξκμ+λκ=0μ1μ2κ1μ21bμ+1,κ+1τξκ+1μξκμ,

and

Bμ,λs,ξ;τ=κ=0μsbμs,κττξκ+sμ+1τξκμ
+λτκ=0μs1μs2κ1μs21bμs+1,κ+1τξκ+s+1μξκ+sμ
+λ1τκ=0μs1μs2κ1μs21bμs+1,κ+1τξκ+1μξκμ.

Next, we give the following lemmas, which present the moments of the blending-type (α,λ,s)-Bernstein operators.

(10) Lμ,λα,s1;τ=1;(10)

Lemma 2

([23]). If μ<s, for any α[0,1]and λ[1,1] we have Lμ,λα,sξ;τ=Bμ,λξ;τ where Bμ,λξ;τ are defined as in equation (5) and have the moments given as in Lemma 1.

Lemma 3

([23]). If μs, for any α0,1]and λ[1,1], we have the following identities:

(11) Lμ,λα,s1;τ=1;(11)
Lμ,λα,st;τ=τ+αλμ12τ+τμ+11τμ+1μ1+1αλμ12τ+τμs+11τμs+1μs1;
Lμ,λα,st2;τ=τ2+μ+1αss1τ1τμ2+αλμ2τ4τ2+2τμ+1μ1+αλμ2τμ+1+1τμ+11μ1
+1αλμ2τ4τ2+2τμs+1μs1+1αλμ2τμs+1+1τμs+11+2τμs+11τμs+1μs1.

Remark 1. In (Gezer et al. Citation2022), Gezer et al. only presented and proved the moments given by (10), (11) and (12) for μs. In the next lemma, we will complete the unfinished part of Lemma 3 by stating and giving the proofs of Lμ,λα,st3;τ and Lμ,λα,st4;τ.

Lemma 4.

If μs, for any α[0,1]and λ[1,1], we have the moments Lμ,λα,st3;τ and Lμ,λα,st4;τ as follows:

Lμ,λα,st3;τ=τ3+3μ+1αss1τ21τμ2+μ+1αss21τ13τ+2τ2μ3
+αλ6τ3+6τμ+1μ2+3τ23τμ+1μμ1+9τ2+9τμ+1μ2μ1+4τ+4τμ+1μ3μ1
+1τμ+11τμ+1μ+3μ3μ21
+1αλ6τ3+6τμs+1μ2+3τ23τμs+1μμs1+9τ2+9τμs+1μ2μs1+4τ+4τμs+1μ3μs1
+1τμs+11τμs+1μs+3μ3μs21
+1αλμ26sττ2+τμs+1μs1+1αλμ33ss1τ3τ2+2τ3+τμs+1μs1
(13) +1αλμ33τss1τμs+11τμs+1μs1;(13)
(14) Lμ,λα,st4;τ=τ4+6μ+1αss1τ31τμ2+μ+1αss21τ2718τ+11τ2μ3(14)

+μ+1αss31τ17τ+12τ26τ3μ4+31αss12μsτ21+2ττ2μ4
+αλ6τ22τ38τ4+4τμ+1μ2+τ232τ3+16τ4+17τμ+1μ3+ττμ+1μ4
+7τ27τμ+1μ2μ1+τ23τ2+22τμ+1μ3μ1+1τμ+1+τ1μ4μ1
+1αλ6τ22τ38τ4+4τμs+1μ2+τ232τ3+16τ4+17τμs+1μ3+ττμs+1μ4
+7τ27τμs+1μ2μs1+τ23τ2+22τμs+1μ3μs1+1τμs+1+τ1μ4μs1
+1αλμ24sτ32τ4+3τ2τμs+1μs1
+1αλμ3s12s13τ249s1τ3+83s1τ4+5+12s12τs1τμs+1μs1
+1αλμ4s4s26s+3τ2s110s+7τ2+32s21τ316s21τ4μs1
s4s26s+5τμs+1μs1
+1αλμ42sτ2s23s+2τμs+11τμs+1μs1.

Proof.

Recall that

Lμ,λα,sξ;τ=1αBμ,λs,ξ;τ+αBμ,λξ;τ

by Theorem 1 when μs. Hence, it is sufficient to calculate Bμ,λs,t3;τ, since Bμ,λt3;τ is already given in Lemma 1. Therefore, for ξt=t3, we have

Bμ,λs,t3;τ=κ=0μsbμs,κττκ+sμ3+1τκμ3+λτκ=0μs1μs2κ1μs21bμs+1,κ+1τκ+s+1μ3κ+sμ3
+λ1τκ=0μs1μs2κ1μs21bμs+1,κ+1τκ+1μ3κμ3
=κ=0μsbμs,κτ3τκ2sμ3+3τκs2μ3+τs3μ3+κ3μ3
+λκ=0μs1μs2κ1μs21bμs+1,κ+1τ3κ2μ3+6τs+3κμ3+3τs2+3τs+1μ3
=τ3+3ss1+μτ21τμ2+ss21+μτ2τ23τ+1μ3+3λμ3μs+1Δ3μ,s;τ
+6τs+3λμ3μs+1Δ2μ,s;τ+3τs2+3τs+1λμ3μs+1Δ1μ,s;τ+6λμ3μs21Δ4μ,s;τ
+12τs6λμ3μs21Δ3μ,s;τ+6τs26τs2λμ3μs21Δ2μ,s;τ,

where

Δ1μ,s;τ=κ=0μs1bμs+1,κ+1τ=1τμs+11τμs+1,
Δ2μ,s;τ=κ=0μs1κbμs+1,κ+1τ=μs+1τ1τμsΔ1μ,s;τ,
Δ3μ,s;τ=κ=0μs1κ2bμs+1,κ+1τ
=μs+1μsτ21τμs1+μs+1τ1τμs2Δ2μ,s;τΔ1μ,s;τ,

(see (Gezer et al. Citation2022)), and

Δ4μ,s;τ=κ=0μs1κ3bμs+1,κ+1τ
=μs21μsτ31τμs2+μs+1μsτ21τμs1+μs+1τ1τμsΔ3μ,s;τΔ2μ,s;τΔ1μ,s;τ.

By substitution of Δ1,Δ2,Δ3 and Δ4 in Bμ,λs,t3;τ, we get

(15) Bμ,λs,t3;τ=τ3+3ss1+μτ21τμ2++ss21+μτ2τ23τ+1μ3(15)
+λ6τ3+6τμs+1μ2+3τ23τμs+1μμs1+9τ2+9τμs+1μ2μs1+4τ+4τμs+1μ3μs1
+1τμs+11τμs+1μs+3μ3μs21
+λμ26sττ2+τμs+1μs1+λμ33ss1τ3τ2+2τ3+τμs+1μs1
+λμ33s1τμs+11τμs+1μs1.

Hence, by equations (2.13), (2.14) and Lemma 1, we obtain Lμ,λα,st3;τ as in equation (2.11).

Next, we will compute Lμ,λα,st4;τ. First we need to obtain Bμ,λs,t4;τ. For ξt=t4, we have

Bμ,λs,t4;τ=κ=0μsbμs,κττκ+sμ4+1τκμ4+λτκ=0μs1μs2κ1μs21bμs+1,κ+1τκ+s+1μ4κ+sμ4
+λ1τκ=0μs1μs2κ1μs21bμs+1,κ+1τκ+1μ4κμ4
=κ=0μsbμs,κτ4τκ3sμ4+6τκ2s2μ4+4τκs3μ4+τs4μ4+κ4μ4
+λκ=0μs1μs2κ1μs21bμs+1,κ+1τ4κ3μ4+12τs+6κ2μ4+12τs2+12τs+4κμ4\break+4τs3+6τs2+4τs+1μ4
=τ4+6ss1+μτ3τ+1μ2+ss21+μτ211τ218τ+7μ3
+ss31+μτ6τ3+12τ27τ+1μ4+3ss12μsτ2τ2+2τ1μ4
+4λμ4μs+1Δ4μ,s;τ+12τs+6λμ4μs+1Δ3μ,s;τ+12τs2+12τs+4λμ4μs+1Δ2μ,s;τ
+4τs3+6τs2+4τs+1λμ4μs+1Δ1μ,s;τ+8λμ4μs21Δ5μ,s;τ+24τs12λμ4μs21Δ4μ,s;τ
+24τs224τs8λμ4μs21Δ3μ,s;τ+8τs312τs28τs2λμ4μs21Δ2μ,s;τ,

where

Δ5μ,s;τ=κ=0μs1κ4bμs+1,κ+1τ
=μs21μsμs2τ41τμs3
+μs21μsτ31τμs2+μs+1μsτ21τμs1
+μs+1τ1τμs+Δ4μ,s;τ3Δ2μ,s;τΔ1μ,s;τ.

If we substitute Δ1,Δ2,Δ3,Δ4, and Δ5 in Bμ,λs,t4;τ, we obtain

(16) Bμ,λs,t4;τ=τ4+6ss1+μτ3τ+1μ2+ss21+μτ211τ218τ+7μ3(16)
+ss31+μτ6τ3+12τ27τ+1μ4+3ss12μsτ2τ2+2τ1μ4
+λ6τ22τ38τ4+4τμs+1μ2+τ232τ3+16τ4+17τμs+1μ3+ττμs+1μ4
+7τ27τμs+1μ2μs1+τ23τ2+22τμs+1μ3μs1+1τμs+1+τ1μ4μs1
+λμ24sτ32τ4+3τ2τμs+1μs1
+λμ3s12s13τ249s1τ3+83s1τ4+5+12s12τs1τμs+1μs1
+λμ4s4s26s+3τ2s110s+7τ2+32s21τ3μs1
+s16s21τ44s26s+5τμs+1μs1
+λμ42sτ2s23s+2τμs+11τμs+1μs1.

Hence, by equations (2.13), (2.15) and Lemma 1, we attain Lμ,λα,st4;τ as in equation (2.12). This completes the proof.

3. New (α, λ, s) – Bernstein-Kantorovich-Stancu operators of blending-type

This section is dedicated to the establishment and the associated auxiliary results of the operators Sμ,σ,ρα,λ,sξ;τ. Let L1[0,1] denote the space of all Lebesgue integrable functions on the interval 0,1. Considering two non-negative parameters σ and ρ such that 0ρσ, we construct the positive (α,λ,s)-BKSO as

(17) Sμ,σ,ρα,λ,sξ;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1ξ(y)dy,(17)

where λ and α are shape parameters, sZ+ and b˜μ,κα,sλ;τ are as in (9).

Remark 2.

Recall that for μ<s, the blending-type (α,λ,s)-Bernstein bases are equal to Bézier bases, that is, b˜μ,κα,sλ;τ=b˜μ,κλ;τ by identity (9). Therefore, (α,λ,s)-BKSO given by (17) transform to λ-Bernstein-Kantorovich-Stancu operators Sμ,σ,ρλξ;τ introduced by Bodur et al. in (Citation2022). They gave a uniform convergence result along with the order of approximation in the sense of local approximation and Voronovskaja type theorem with a complete proof for operators Sμ,σ,ρλξ;τ. Even though the moments for the case μ<s were presented in (Bodur et al. Citation2022), we provide the proofs for these identities for the readers’ convenience.

Lemma 5.

Let α[0,1], λ[1,1], and sZ+. For μ<s, the moments of (α,λ,s)-BKSO are as follows:

(18) Sμ,σ,ρα,λ,s1;τ=1;(18)
(19) Sμ,σ,ρα,λ,st;τ=2μτ+2ρ+12(μ+σ+1)+λμ1(μ+σ+1)12τ+τμ+11τμ+1;(19)
(20) Sμ,σ,ρα,λ,st2;τ=μ2μτ2+2μ1+ρτ(μ+σ+1)2+1+3ρ+3ρ23(μ+σ+1)2(20)
+2λμ1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1τμ+1ρ1τμ+1;
(21) Sμ,σ,ρα,λ,st3;τ=μ33μ2+2μτ3+3μ23μ1+ρτ2+2+6ρ+3ρ2μτ(μ+σ+1)3(21)
+3μ23μτ2+3μτ2(μ+σ+1)3+1+4ρ+6ρ2+4ρ34(μ+σ+1)3+6μλ(μ+σ+1)3τ3+τμ+1
+λμ1(μ+σ+1)31+3ρ2+3μ1+2ρ22ρ2ρ2τ+3μ2μ5+4ρτ2
+3μ2+6μ2+ρ+5+6ρ+3ρ2τμ+11+3ρ21τμ+1

+3λ2μ1(μ+σ+1)3τμ+1+1τμ+11+μ+3λμ21(μ+σ+1)31τμ+11τμ+1;
(22) Sμ,σ,ρα,λ,st4;τ=μ46μ3+11μ26μτ4+4μ312μ2+8μ2+ρτ3(μ+σ+1)4(22)
+5+6ρ+2ρ23μ23μτ2+23+7ρ+6ρ2+2ρ3μτ(μ+σ+1)4+1+5ρ+10ρ2+10ρ3+5ρ45(μ+σ+1)4
+λ(μ+σ+1)4τ+6μ2μτ22μ2+2μ11+6ρτ38μ22μτ4
+λμ1(μ+σ+1)421+ρ2ρ31+1τμ+1
+μ5+12ρ+12ρ2924ρ12ρ28ρ3τ+μ213+12ρμ49+60ρ+24ρ2τ2
+μ213+12ρ+4μ11+12ρ+3ρ2+11+26ρ+12ρ2+4ρ3τμ+1.

Proof.

By utilizing the definitions of the operators Sμ,σ,ρα,λ,sξ;τ and Lμ,λα,sξ;τ given in (17) and (8), respectively, we have the first three moments of Sμ,σ,ρα,λ,sξ;τ as

Sμ,σ,ρα,λ,s1;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1dt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ1(μ+σ+1)
=κ=0μb˜μ,κα,sλ;τ=Lμ,λα,s1;τ,
Sμ,σ,ρα,λ,st;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1tdt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ2κ+2ρ+12(μ+σ+1)2
=μ(μ+σ+1)Lμ,λα,st;τ+2ρ+12(μ+σ+1)Lμ,λα,s1;τ,

and

Sμ,σ,ρα,λ,st2;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1t2dt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ3κ2+3+6ρκ+1+3ρ+3ρ23(μ+σ+1)3
=μ2(μ+σ+1)2Lμ,λα,st2;τ+2ρ+1μ(μ+σ+1)2Lμ,λα,st;τ+1+3ρ+3ρ23(μ+σ+1)2Lμ,λα,s1;τ.

Recall that for μ<s, we have Lμ,λα,sξ;τ=Bμ,λξ;τ by Lemma 2. Bearing in mind this fact, we obtain the first three moments of Sμ,σ,ρα,λ,sξ;τ given in equations (3.2), (3.3) and (3.4) as

Sμ,σ,ρα,λ,s1;τ=Bμ,λ1;τ=1,
Sμ,σ,ρα,λ,st;τ=μ(μ+σ+1)Bμ,λt;τ+2ρ+12(μ+σ+1)Bμ,λ1;τ
=2μτ+2ρ+12(μ+σ+1)+λμ1(μ+σ+1)12τ+τμ+11τμ+1,
Sμ,σ,ρα,λ,st2;τ=μ2(μ+σ+1)2Bμ,λt2;τ+2ρ+1μ(μ+σ+1)2Bμ,λt;τ+1+3ρ+3ρ23(μ+σ+1)2Bμ,λ1;τ
=μ2μτ2+2μ1+ρτ(μ+σ+1)2+1+3ρ+3ρ23(μ+σ+1)2
+2λμ1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1τμ+1ρ1τμ+1,

respectively. The proofs of equations (3.5) and (3.6) are omitted due to the similarity to the above calculations. Hence, the proof is complete.

Lemma 6.

Let α[0,1], λ[1,1], and sZ+. For μs, the moments of (α,λ,s)-BKSO are as follows:

(23) Sμ,σ,ρα,λ,s1;τ=1;(23)
(24) Sμ,σ,ρα,λ,st;τ=2μτ+2ρ+12μ+σ+1+αλμ1μ+σ+112τ+τμ+11τμ+1+1αλμs1μ+σ+112τ+τμs+11τμs+1(24)
Sμ,σ,ρα,λ,st2;τ=μ2τ2+1+2ρμτ+μ+1αss1τ1τ(μ+σ+1)2+1+3ρ+3ρ23(μ+σ+1)2
+2αλμ1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1τμ+1ρ1τμ+1
+21αλμs1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1+τμs+1\breakρ+1τμs+1;
(27) +21αλμs1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1+τμs+1\breakρ+1τμs+1;(27)
Sμ,σ,ρα,λ,st3;τ=μ3τ3+1+3ρ+3ρ2μτ(μ+σ+1)3+3+6ρμ2τ22(μ+σ+1)3+1+4ρ+6ρ2+4ρ34(μ+σ+1)3
+3μμ+1αss1τ21τ(μ+σ+1)3+μ+1αss21τ13τ+2τ2(μ+σ+1)3
+3+6ρμ+1αss1τ1τ2(μ+σ+1)3+6μλ(μ+σ+1)3τ3+ατμ+1+1ατμs+1
+3αλμ1(μ+σ+1)3ρ2+μ1+2ρ22ρ2ρ2τ+μ2μ5+4ρτ2
+μ2+2μ2+ρ+2ρ+ρ2τμ+1ρ21τμ+1
+αλ2μ1(μ+σ+1)31+13τμ+1+1τμ+1+μ+3αλμ21(μ+σ+1)31τμ+11τμ+1
+31αλμs1(μ+σ+1)3ρ2+μ1+2ρ22ρ2ρ2τ+μ2μ5+4ρτ2
2μsτ3ρ21τμs+1+μ2+2μ2+ρ+2ρ+ρ2τμs+1
+1αλ2μs1(μ+σ+1)31+13τμs+1+1τμs+1
+3ss11αλμs1(μ+σ+1)3τ3τ2+2τ3+τμs+1
+31αλμs1(μ+σ+1)32μs+2ρ+2τμs+1s+2ρ1τμs+1
+μs+31αλμs21(μ+σ+1)31τμs+11τμs+1;
Sμ,σ,ρα,λ,st4;τ=μ4τ4+2+4ρμ3τ3+2+6ρ+6ρ2μ2τ2+1+4ρ+6ρ2+4ρ3μτ(μ+σ+1)4
+1+5ρ+10ρ2+10ρ3+5ρ45(μ+σ+1)4+31αss12μsτ21+2ττ2(μ+σ+1)4
+μ+1αss31(μ+σ+1)417τ+12τ26τ3
+μ+1αss21τ(μ+σ+1)42+4ρ+7μ12ρ6τ+29μ+4ρ+2τ2+11μτ3
+2μ+1αss1τ(μ+σ+1)41+3ρ+3ρ2+3μ1+2ρ13ρ3ρ2τ
+3μ2μ1+2ρτ23μ2τ3
+λ(μ+σ+1)4τ+6μ2μτ22μ2+2μ11+6ρτ38μ22μτ4
+4μ2+μ29+24ρ1λ(μ+σ+1)4ατμ+1+1ατμs+1
+αλμ1(μ+σ+1)421+ρ2ρ31+1τμ+1
+μ5+12ρ+12ρ2924ρ12ρ28ρ3τ+μ213+12ρμ49+60ρ+24ρ2τ2
+μ213+12ρ+4μ11+12ρ+3ρ2+11+26ρ+12ρ2+4ρ3τμ+1
+2+4ραλμ+3μ21(μ+σ+1)41τμ+11τμ+1
+1αλμs1(μ+σ+1)421+ρ2ρ31+1τμs+1
+μ5+12ρ+12ρ2924ρ12ρ28ρ3τ+μ213+12ρμ49+60ρ+24ρ2τ2
+μ213+12ρ+4μ11+12ρ+3ρ2+11+26ρ+12ρ2+4ρ3τμs+1
+s1αλμs1(μ+σ+1)44s2+12ρs13τ+μ12s134s15s+9ρ+8τ2
+μ2+μ9s6ρ4+s18s+6ρ+11τ3+μ2μ3s1+2s21τ4
+8μ2+μ12s+511+12s4s2+1212ρτμs+1
+21αλμs1(μ+σ+1)46μ26μs2ρ2+76s+2s26+12ρ+6ρ2τμs+1
+8μ2+μ12s+511+12s4s2+1212ρτμs+1
+21αλμs1(μ+σ+1)46μ26μs2ρ2+76s+2s26+12ρ+6ρ2τμs+1
1+2s2+6+6ρ21τμs+1
+2+4ρ1αλμs+3μs21(μ+σ+1)41τμs+11τμs+1.

Proof.

We will again only derive the first three moments of Sμ,σ,ρα,λ,sξ;τ for μs, since the remaining moments given in (3.10) and (3.11) are computed in the same way with the help of Lemma 4.

Now, by employing the definitions given in (3.1), (2.6) and Lemma 3, we obtain equations (3.7), (3.8) and (3.9) as

Sμ,σ,ρα,λ,s1;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1dt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ1(μ+σ+1)
=κ=0μb˜μ,κα,sλ;τ=Lμ,λα,s1;τ=1,
Sμ,σ,ρα,λ,st;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1tdt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ2κ+2ρ+12(μ+σ+1)2
=μ(μ+σ+1)Lμ,λα,st;τ+2ρ+12(μ+σ+1)Lμ,λα,s1;τ
=2μτ+2ρ+12(μ+σ+1)+αλμ1(μ+σ+1)12τ+τμ+11τμ+1
+1αλμs1(μ+σ+1)12τ+τμs+11τμs+1,

and

Sμ,σ,ρα,λ,st2;τ=(μ+σ+1)κ=0μb˜μ,κα,sλ;τκ+ρμ+σ+1κ+ρ+1μ+σ+1t2dt=(μ+σ+1)κ=0μb˜μ,κα,sλ;τ3κ2+3+6ρκ+1+3ρ+3ρ23(μ+σ+1)3
=μ2(μ+σ+1)2Lμ,λα,st2;τ+2ρ+1μ(μ+σ+1)2Lμ,λα,st;τ+1+3ρ+3ρ23(μ+σ+1)2Lμ,λα,s1;τ
=μ2τ2+1+2ρμτ+μ+1αss1τ1τ(μ+σ+1)2+1+3ρ+3ρ23(μ+σ+1)2
+2αλμ1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1+τμs+1\breakρ+1τμs+1,

respectively, which completes the proof.

Corollary 1.

Let α,τ0,1, λ[1,1], and sZ+. For μ<s, the central moments of (α,λ,s)-BKSO are as follows:

Sμ,σ,ρα,λ,stτ;τ=2σ+1τ+2ρ+12(μ+σ+1)+λμ1(μ+σ+1)12τ+τμ+11τμ+1;
Sμ,σ,ρα,λ,stτ2;τ=μ+σ+12τ2μ+σ+2+μσ+11+2ρτμ+σ+2+1+3ρ+3ρ2μ+σ+2+2λμ1μ+σ+2ρ+μ2ρ1τ2μτ2\break+μ+ρ+1τμ+1ρ1τμ+12τλμ1μ+σ+12τ+τμ+11τμ+1
Sμ,σ,ρα,λ,stτ3;τ=μ5+3σσ+13τ3(μ+σ+1)3+3τ22(μ+σ+1)3μ5+2σ+2ρ+σ+121+2ρ
+μ7+12ρ+6ρ2τ2(μ+σ+1)3+1+4ρ+6ρ2+4ρ34(μ+σ+1)3
+6τμ+1λμ1(μ+σ+1)2+3τ2λμ1(μ+σ+1)τμ+11τμ+1
+λ2μ1(μ+σ+1)31+7τμ+1+1τμ+1
+3λμ1(μ+σ+1)3ρ2+μ2ρ+122σρτ+μ+σ+1σ+4ρ+3τ2
+2μσ+12τ3+μ+ρ+12τμ+1ρ21τμ+1
+μ+3λμ21(μ+σ+1)31τμ+11τμ+1;
Sμ,σ,ρα,λ,stτ4;τ=τ4(μ+σ+1)43μ223σ2+10σ+10μ+σ+14
+2τ3(μ+σ+1)43μ2+3σ2+3σ5+2ρ+102+ρμσ+131+2ρ
+τ2(μ+σ+1)43μ26ρ2+5+2σ5+6ρμ+2σ+121+3ρ+3ρ2
+τ(μ+σ+1)46ρ2+10ρ+5μσ+11+4ρ+6ρ2+4ρ3
+1+5ρ+10ρ2+10ρ3+5ρ45(μ+σ+1)424μτλτμ+1(μ+σ+1)3
+λ(μ+σ+1)4τ+6μ2μτ22μ2+2μ11+6ρτ3
+82μ2+μ5+3στ4+4μ2+μ29+24ρ1τμ+1
+4τ3λμ1(μ+σ+1)τμ+1+1τμ+1+12τ2λμ1(μ+σ+1)2(μ+ρ+1)τμ+1ρ1τμ+1
+2τλμ1(μ+σ+1)316ρ21τμ+1+6μ126ρ+12\break12μρ+113τμ+1
+2+2ρ4ρ3λμ1(μ+σ+1)41τμ+1+1τμ+1
+λμ1(μ+σ+1)482μ33μ2σ+1+σ+13τ4
4μ36μ2ρ+29μσ+1+σσ+32+6ρσ+12+4τ3
+μ2μ37+12σ+36ρ+24σρ+12+24ρ2+1+12ρσ2+3τ2
+μ7+12ρ+2σ16ρ28ρρ2+3ρ+37τ
+μ213+12ρ+4μ11+12ρ+3ρ2+13+28ρ+12ρ2τμ+1
+4τμ+3λμ21(μ+σ+1)31+τμ+1+1τμ+1+2+4ρμ+3λμ21(μ+σ+1)41τμ+11τμ+1.

Corollary 2.

Let α,τ0,1, λ[1,1], and sZ+. For μs, the central moments of (α,λ,s)-BKS operators are as follows

Sμ,σ,ρα,λ,stτ;τ=2σ+1τ+2ρ+12(μ+σ+1)+αλμ1(μ+σ+1)12τ+τμ+11τμ+1
(31) +1αλμs1(μ+σ+1)12τ+τμs+11τμs+1;(31)
Sμ,σ,ρα,λ,stτ2;τ=μ+σ+121αss1τ2(μ+σ+1)2+μσ+11+2ρ+1αss1τ(μ+σ+1)2+1+3ρ+3ρ23(μ+σ+1)2
+2αλμ1(μ+σ+1)2ρ+μ2ρ1τ2μτ2+μ+ρ+1τμ+1ρ1τμ+1
+21αλμs1(μ+σ+1)ρ+μ2ρ1τ2μτ2+μ+ρ+1τμs+1ρ1τμs+1
+21αλμs1(μ+σ+1)τμs+11τμs+12ταλμ1(μ+σ+1)12τ+τμ+11τμ+1
2τ1αλμs1(μ+σ+1)12τ+τμs+11τμs+1;
Sμ,σ,ρα,λ,stτ3;τ=μ5+3σσ+13+1αss15+3σ+2sτ3(μ+σ+1)3
+3τ22(μ+σ+1)3μ5+2σ+2ρ+σ+121+2ρ1αss15+2σ+2ρ+2s
+μ7+12ρ+6ρ2+1αss15+6ρ+2sτ2(μ+σ+1)3+1+4ρ+6ρ2+4ρ34(μ+σ+1)3
+6τμ+1αλμ1(μ+σ+1)2+3τ2αλμ1(μ+σ+1)τμ+11τμ+1
+αλ2μ1(μ+σ+1)31+7τμ+1+1τμ+1
+3αλμ1(μ+σ+1)3ρ2+μ2ρ+122σρτ+μ+σ+1σ+4ρ+3τ2
+2μσ+12τ3+μ+ρ+12τμ+1ρ21τμ+1
+μ+3αλμ21(μ+σ+1)31τμ+11τμ+1+3τ21αλμs1(μ+σ+1)τμs+11τμs+1
+6sτ21αλμs1(μ+σ+1)2τμs+1+1τμs+1
+6τ1αλμs1(μ+σ+1)2μ+ρ+1τμs+1+ρ1τμs+1
+31αλμs1(μ+σ+1)3μ+ss12ρ+122σρτ
+3μ3ss1+σ+1σ+4ρ+3τ2+2μ+ss1σ+12τ3
+μs+ρ+12+s2ρ+1τμs+1
+31αλμs1(μ+σ+1)32μ+ρ+1sτμs+1s+2ρ1τμs+1
+1αλ2μs1(μ+σ+1)31+6ρ2+7τμs+1+16ρ21τμs+1
+μs+31αλμs21(μ+σ+1)31τμs+11τμs+1;

(33) Sμ,σ,ρα,λ,stτ4;τ=τ4(μ+σ+1)4{3μ223σ2+10σ+10μ+σ+14(33)
+1αss16μ3s+126σ+12s+18σ+11}
+2τ3(μ+σ+1)43μ2+3σ2+3σ5+2ρ+102+ρμσ+131+2ρ
+1αss16μ+3s2+σ2+s17+6σ+4ρ+3σ5+2ρ+102+ρ
+τ2(μ+σ+1)43μ26ρ2+5+2σ5+6ρμ+2σ+121+3ρ+3ρ2
+1αss16μ10s63+4ρs+σ10+12ρ+4s
+τ(μ+σ+1)46ρ2+10ρ+5μσ+11+4ρ+6ρ2+4ρ3
+1αss1s2+s3+4ρ+6ρ2+10ρ+5
+1+5ρ+10ρ2+10ρ3+5ρ45(μ+σ+1)4
+λ(μ+σ+1)4τ+6μ2μτ22μ2+2μ11+6ρτ3+82μ2+μ5+3στ4
+α4μ2+μ29+24ρ1τμ+1+1α4μ2+μ29+24ρ1τμs+1
+24μτλ(μ+σ+1)3ατμ+1+1ατμs+1
+4τ3αλμ1(μ+σ+1)τμ+1+1τμ+1+12τ2αλμ1(μ+σ+1)2(μ+ρ+1)τμ+1ρ1τμ+1
+2ταλμ1(μ+σ+1)316ρ21τμ+1+6μ126ρ+12\break12μρ+113τμ+1
+2+2ρ4ρ3αλμ1(μ+σ+1)41τμ+1+1τμ+1
+αλμ1(μ+σ+1)482μ33μ2σ+1+σ+13τ4
4μ36μ2ρ+29μσ+1+σσ+32+6ρσ+12+4τ3
+μ2μ37+12σ+36ρ+24σρ+12+24ρ2+1+12ρσ2+3τ2
+μ7+12ρ+2σ16ρ28ρρ2+3ρ+37τ
+μ213+12ρ+4μ11+12ρ+3ρ2+13+28ρ+12ρ2τμ+1
+4τμ+3αλμ21(μ+σ+1)31+τμ+1+1τμ+1+2+4ρμ+3αλμ21(μ+σ+1)41τμ+11τμ+1
+4τ31αλμs1(μ+σ+1)τμs+1+1τμs+1
+12τ21αλμs1(μ+σ+1)2(μ+ρ+1)τμs+1ρ1τμs+1
+2τ1αλμs1(μ+σ+1)316ρ21τμs+1
+6μ126ρ+1212μρ+113τμs+1
+2+2ρ4ρ31αλμs1(μ+σ+1)41τμs+1+1τμs+1
+1αλμs1(μ+σ+1)482μ33μ2σ+1+σ+13τ4
4μ36μ2ρ+29μσ+1+σσ+32+6ρσ+12+4τ3
+μ2μ37+12σ+36ρ+24σρ+12+24ρ2+1+12ρσ2+3τ2
+μ7+12ρ+2σ16ρ28ρρ2+3ρ+37τ
+μ213+12ρ+4μ11+12ρ+3ρ2+13+28ρ+12ρ2τμs+1
+12sτ31αλμs1(μ+σ+1)2τμs+11τμs+1
+12sτ21αλμs1(μ+σ+1)32μ+s2ρ2τμs+1+s+2ρ1τμs+1
+21αλμs1(μ+σ+1)42s2+6ρs+ρ+11τμs+1
+6μ2+6μ2s+2ρ+3+2s26sσ+ρ+2+6ρρ+2+6σ+13τμs+1
+1αλμs1(μ+σ+1)44s2+12ρs13τ+μ4s5s+6\break12s1σ+3ρ+30τ2
+4μ2μ6ρ+11+8s2+3s3σ+2ρ+49σ+6ρ+20τ3
+82μ2+μ3σ+5s12s+3σ+5τ4
+8μ2+μ12s+54ss3+12ρs111τμs+1
+4τμs+31αλμs21(μ+σ+1)31τμs+11τμs+1
+2+4ρμs+31αλμs21(μ+σ+1)41τμs+11τμs+1.

Lemma 7.

Let be the uniform norm defined on [0,1] and α,τ0,1, λ[1,1]. Then for a given ξC[0,1]

Sμ,σ,ρα,λ,sξξ,

for all μN and sZ+.

Proof.

By taking into account Lemma 5, Lemma 6 and the definition of Sμ,σ,ρα,λ,sξ;τ given in (3.1), we have

Sμ,σ,ρα,λ,sξξSμ,σ,ρα,λ,s1;τ=ξ,

which concludes the proof.□

Theorem 2.

If ξ is continuous on [0,1], then

limμSμ,σ,ρα,λ,sξ;τ=ξτ

uniformly on [0,1].

Proof.

Utilizing the well-known Bohman-Korovkin theorem (Korovkin Citation1960, Bohman Citation1952), our objective is to prove the subsequent condition for uniform convergence:

limμSμ,σ,ρα,λ,sei;τ=τi,
where ei=τi and i=0,1,2. By (3.7), (3.8) and (3.9) the following results are satisfied:
limμSμ,σ,ρα,λ,se0;τ=1,limμSμ,σ,ρα,λ,se1;τ=τlimμSμ,σ,ρα,λ,se2;τ=τ2

and the proof is completed.

Before we proceed with the following theorem, we shall note that C20,1 refers to the set of functions ξC[0,1], which are twice differentiable with ξ,ξ ′′C[0,1].

Theorem 3.

Assume that ξC0,1. If ξ ′′τ exists for a point τ[0,1], then

limμμSμ,σ,ρα,λ,s(ξ;τ)ξ(τ)]=2σ+1τ+2ρ+12ξ (τ)+ττ22ξ  ′′(τ),

uniformly on 0,1.

Proof.

Consider the case μs. For a fixed τ[0,1] suppose that ξC2[0,1]. Due to Taylor’s expansion with a reminder in Peano’s form, we can write

(34) ξ(t)ξ(τ)=(tτ)ξ(τ)+12(tτ)2ξ ′′(τ)+(tτ)2r˜τ(t),(34)
where r˜τ(t) is the remainder term satisfying r˜τ(t)C[0,1] and limtτr˜τ(t)=0. By adopting identity (3.18) for (α,λ,s)-BKSO, we obtain
(35) Sμ,σ,ρα,λ,s(ξ;τ)ξ(τ)=ξ(τ)Sμ,σ,ρα,λ,stτ;τ+ξ ′′(τ)2Sμ,σ,ρα,λ,s(tτ)2;τ+Sμ,σ,ρα,λ,s(tτ)2r˜τ(t);τ.(35)

Multiplication of both sides of (3.19) by μ and utilization of the Cauchy-Schwarz inequality, respectively, yield

μSμ,σ,ρα,λ,s((tτ)2ξτ(t);τ)μ2Sμ,σ,ρα,λ,s(tτ)4;τSμ,σ,ρα,λ,sr˜τ(t);τ.

Consequently, by fourth order central moment (34) and Theorem 2, and the following expression

limμμ2Sμ,σ,ρα,λ,s(tτ)4;τ=3τ42λ(1+2α)τ36τ3+3(2λ+1)τ2,

we have

limμμSμ,σ,ρα,λ,s((tτ)2r˜τ(t);τ)=0.

Hence, by (3.12), (3.13), (3.15) and (3.16), the proof is completed for μs. Using the same techniques and following likewise steps, one can prove the statement for μ<s; therefore, it is omitted.□

4. Convergence Results for Kantorovich-Stancu Type (α, λ, s)-Bernstein Operators Sμ,σ,ρα,λ,s

In this section, we investigate the convergence characteristics and a Voronovskaja type approximation result for (α,λ,s)-BKSO by utilizing the weighted B-statistical convergence notion. In addition, we give an estimation for the rate of the weighted B-statistical convergence of these operators. For the readers who are not familiar with the concepts of asymptotic density, statistical convergence, weighted statistical convergence, B-summability, regular summability matrix, B-statistically convergence, and weighted B-statistically convergence, we refer to pioneering works (Kadak et al. Citation2017; Kadak Citation2020) and the references therein. The application of Bohmann-Korovkin theorem using the weighted statistical convergence is studied in the papers (Mursaleen et al. Citation2012; Belen and Mohiuddine Citation2013; Mohiuddine Citation2016; Baliarsingh et al. Citation2018; Kadak Citation2018).

We begin our work by considering the set M, a subset of N0:=N{0}. The asymptotic density of the set M is denoted by D(M) and is defined by

D(M)=limμ1μ{m=:mM}

provided the limit exists. Note that asymptotic density lets us define the statistical convergence. Consequently, we say a sequence τ=τm is statistically convergent to the number L if

limμ1μ{m:m=and|τmL|=}=0,forallε0.

Next, consider a sequence of non-negative numbers denoted η=ηm given with

(36) η0>0andTμ=m=0μηmasμ.(36)

If

limμ1nμ{m=xnμ:ηm|τmL|=}=0,forallε0,

then we say τ=τm is weighted statistically convergent to the number L. Kolk (Kolk Citation1993) introduced a new matrix method, so-called B-summability as follows:

Let B=Bj=b˜μm(j)be a sequence of infinite matrices. If

limμ(Bjτ)μ=limμmb˜μm(j)ηm=Blimτuniformly

for j=0,1,2,, then we say τ is B-summable to the value Blimτ. The method B=Bj is said to be regular if and only if the below conditions are satisfied (see (Stieglitz Citation1973; Bell Citation1973)):C1: B∥=supμ,jm|b˜μm(j)|<;

C2: limμb˜μm(j)=0uniformlyinj for mN0;

C3: limμmb˜μm(j)=1uniformlyinj.

The set of regular methods B satisfying b˜μm(j)=x0 for all μ, m, and j, is denoted by +. For a given B+, if

limμm:|τmL|=b˜μm(j)=0uniformlyinj

for all ε>0, then we say τ=τm is B-statistically convergent to the number L.

Definition 1

([33]). Assume that B=BjjN+and let sequence η=ηm be defined as in (37). If

limr1nrμ=0rημm:|τmL|=b˜μm(j)=0uniformlyinj

for all m and ε>0, then the sequence τ=τμ is weighted B-statistically convergent to the number L. In symbols, it is written as statB,ημlimτ=L.

Theorem 4.

Let α,τ0,1, λ[1,1], ξC[0,1] and B+. Then we have

[statB,ημ]limμSμ,σ,ρα,λ,sξξC[0,1]=0,

for all μ and positive integer s.

Proof.

For μs, let ξC[0,1] and consider a sequence of functions ei(τ)=τi for a fixed τ0,1. It is enough to show that

[statB,ημ]limμSμ,σ,ρα,λ,seieiC[0,1]=0,fori=0,1,2,

on the grounds of Korovkin-Bohman Theorem (see (Bohman Citation1952; Korovkin Citation1960)). Accordingly for i=0, we obtain

(37) [statB,ημ]limμSμ,σ,ρα,λ,se0e0C[0,1]=0,(37)

by employing identity (3.7) from Lemma 6. Now for i=1, by substitution of identities (3.8) and (3.15) respectively, we get

supτ0,1Sμ,σ,ρα,λ,se1;τe1τ=supτ0,1|2μτ+2ρ+1μ+σ++αλμ1μ+σ+12τ+τμ+11τμ+1+1αλμs1μ+σ+12τ+τμs+11τμs+1τ|supτ0,1Sμ,σ,ρα,λ,stττ

which implies

supτ0,1Sμ,σ,ρα,λ,se1;τe1τ1+2ρ2μ+2σ+2.

Next, for a fixed nε0, we choose a number ε>0 such that εnε. Subsequently, defining the sets G and G1 as follows

n:=μn:nμ,σ,ρα,λ,sn1n1=xnε
n1:=μn:1+2ρ2μ+2σ+2.=xnεε,

we attain

(38) 1Trμ=0rημmGb˜μm(j)1Trμ=0rημmG1b˜μm(j).(38)

Taking r in inequality (4.3) yields

(39) [statB,ημ]limμSμ,σ,ρα,λ,se1e1C[0,1]=0.(39)

Last, for i=2, we can write

supτ0,1Sμ,σ,ρα,λ,se1τe1τ=supτ0,1|2μτ+2ρ+1μ+σ++αλμ1μ+σ+12τ+τμ+11τμ+1+1αλμs1μ+σ+12τ+τμs+11τμs+1τ|supτ0,1Sμ,σ,ρα,λ,stττ

by utilizing identities (3.9) and (3.16) respectively. In a similar fashion to the preceding case, we can deduce that

(40) [statB,ημ]limμSμ,σ,ρα,λ,se2e2C[0,1]=0.(40)

Hence, the proof is complete for μs due equations (4.2), (4.4) and (4.5). The proof of the assertion for μ<s is omitted since it is tantamount to the proof of the case μs.□

Definition 2

([24]). Assume that B+. If

limi1ir=xi:1nrμ=0rημm=1τμb˜μm(j)n==0uniformlyinj,

for all ε>0, then we say τ=τμ is statistically weighted B-summable to the limit value L. In symbols, it is written as n¯B(stat)limτ=n.

Theorem 5

([24]). A bounded sequence τ=τμ, ∀μN, is statistically weighted B-summable to the number L if it is weighted B-statistically convergent to the same number L. However, the reverse is not true.

We deduce the next corollary due to Theorem 4 and Theorem 5.

Corollary 3.

For ξC[0,1] and B+, we have

n¯B(stat)limnμ,σ,ρ(α,λ,s)ξξC[0,1]=0.

Now, we are ready to give an estimation for the rate of the weighted B-statistical convergence of (α,λ,s)-BKSO to ξC[0,1] via modulus of continuity of first order. First, we shall present the definition regarding the weighted B-statistical convergence of positive and non-decreasing sequences, which we will utilize in the theorem that follows.

Definition 3

([24]). Let B+ and assume that ψm is a non-decreasing and positive sequence. If

limr1ψrnrμ=0rημm:|τmn|=b˜μm(j)=0uniformlyinj,

for any ε>0, then we say sequence τ=τm is weighted B-statistically convergent to limit L with the rate oψm. In symbols, it is written as statB,ημoψm=τmL.

Theorem 6.

Let B=b˜μm(j) be a non-negative regular summability matrix and φμμN be a non-decreasing and positive sequence. If the condition

ω(ξ;ρμ)=statB,ημoφμ on [0,1], where ρμ:=Sμ,σ,ρα,λ,s(tτ)2C[0,1]1/2 with t0,1], holds true, then for ξC[0,1]

Sμ,σ,ρα,λ,sξξC[0,1]=statB,ημoφμ,

where ω is the usual modulus of continuity.

Proof.

For fixed τ[0,1] assume that ξτC[0,1]. Linearity of (α,λ,s)-BKSO implies

(41) Sμ,σ,ρα,λ,s(ξ(t);τ)ξ(τ)μ,σ,ρα,λ,sξ(t)ξ(τ);τ+N|Sμ,σ,ρα,λ,s(e0;τ)e0(τ)|(41)
ω(ξ,y)Sμ,σ,ρα,λ,s|tτ|y+1;τ
=ω(ξ,y)Sμ,σ,ρα,λ,se0;τ+1y2Sμ,σ,ρα,λ,s((tτ)2;τ),

where N=supτ0,1ξτ. Subsequently, considering the supremum over [0,1] for (4.6) and letting y=ρμ, one obtains

(42) Sμ,σ,ρα,λ,sξ(t)ξ(τ)C[0,1]ω(ξ,ρμ)1ρμ2Sμ,σ,ρα,λ,s(tτ)2C[0,1]+1=2ω(ξ,ρμ).(42)

The following sets are defined or a given ε>0 as

H=μ:Sμ,σ,ρα,λ,sξ(t)ξ(τ)C[0,1]ε,
H1=μ:ω(ξ,ρμ)ε2.

Here one may easily verify that

1φμζHbμζ1φμζH1bμζ.

Last, by employing the given condition the theorem is proved.□

Our next goal is to obtain a quantitative Voronovskaja-type result for the (α,λ,s)-BKSO, Sμ,σ,ρα,λ,s(ξ;τ), with the help of first-order Ditzian-Totik modulus of smoothness (see (Ditzian and Totik Citation1987)). The first-order Ditzian-Totik modulus of smoothness of a function ξC[0,1] is defined as

ωΦ1(ξ,t):=sup0<|ζ|tΔζΦ()1ξ(),

where Φ(τ)=τ(1τ), τ0,1 and

ΔζΦ(τ)1ξ(τ)=ξτ+12ζΦ(τ)ξτ12ζΦ(τ),ifτ±ζΦ(τ)20,1],0,otherwise.

Let ACloc[0,1] denote the class of absolutely continuous functions defined on [a,b]0,1]. Also, for any ξ˜C[0,1], let WΦ1[0,1] be the set of all such ξ˜ satisfying ξ˜ACloc[0,1] and Φξ˜<. Then, we define the corresponding K-functional of ωΦ1(ξ,t) by

KΦ1(ξ,t)=infξξ˜+tΦξ˜:ξ˜WΦ1[0,1],t>0.

In (Ditzian and Totik Citation1987), Ditzian and Totik proved that

(43) L1ωΦ1(ξ,t)Kϕ1(ξ,t)LωΦ1(ξ,t),0<tt0,(43)

for some constants t0 and L>0. We hall note that L is independent of τ and μ.

Theorem 7.

Let ξC2[0,1] and constant L be defined as in (4.8). Moreover, define the terms γμ(τ) and θμ(τ) as

γμ(τ)=Sμ,σ,ρα,λ,s((tτ);τ),θμ(τ)=Sμ,σ,ρα,λ,s((tτ)2;τ).

Then for all τ0,1] and μs, we have

Sμ,σ,ρα,λ,s(ξ;τ)ξ(τ)γμ(τ)ξ(τ)θμ(τ)2ξ ′′(τ)4Lμτ(1τ)ωΦ1ξ ′′,6n.

Proof.

For τ,t0,1] consider the function ξC2[0,1]. If we apply Taylor’s formula to function ξ C[0,1], we obtain

ξ(t)=ξ(τ)+(tτ)ξ(τ)+τt(ty)ξ ′′(y)dy.

Subsequently, we can write

(44) ξ(t)ξ(τ)(tτ)ξ(τ)ξ ′′(τ)2(tτ)2=τt(ty)[ξ ′′(y)ξ ′′(τ)]dy.(44)

Next, utilization of (α,λ,s)-BKSO to both sides of (4.9) yields

(45) Sμ,σ,ρα,λ,s(ξ;τ)ξ(τ)γμ(τ)ξ(τ)θμ(τ)ξ ′′(τ)2Sμ,σ,ρα,λ,sτttyξ ′′(y)ξ ′′(τ)dy;τ.(45)

Inspired by (Finta Citation2011), we can estimate the quantity on the right-hand side of (4.10) as

τttyξ ′′(y)ξ ′′(τ)dy2ξ ′′ξ˜(tτ)2+2Φξ˜Φ1(τ)tτ3,

where ξ˜WΦ1[0,1]. Then utilizing identities (3.16) and (3.17) from Corollary 2 for μs, we get

(46) Sμ,σ,ρα,λ,s((tτ)2;τ)2μΦ2(τ)andSμ,σ,ρα,λ,s((tτ)4;τ)12μ2Φ4(τ).(46)

Consequently, we conclude

Sμ,σ,ρα,λ,s(ξ;τ)ξ(τ)γμ(τ)ξ(τ)θμ(τ)ξ ′′(τ)2
2ξξ˜μ,σ,ρα,λ,s(tτ)2;τ+2Φξ˜Φ1(τ)μ,σ,ρα,λ,s|tτ|3;τ
4μΦ2(τ)ξ ′′ξ˜+2Φξ˜ξ˜1(τ)Sμ,σ,ρα,λ,s((tτ)2;τ)1/2Sμ,σ,ρα,λ,s((tτ)4;τ)1/2
(47) 4μΦ2(τ)ξ ′′ξ˜+6μΦξ˜,(47)

by combining inequalities (4.10)–(4.11) and using the Cauchy-Schwarz inequality. Lastly, we get

Sμ,σ,ρα,λ,s(ξ;τ)ξ(τ)γμ(τ)ξ(τ)θμ(τ)2ξ ′′(τ)4LμΦ2(τ)ωΦ1ξ ′′,6μ,

by taking the infimum of the right-hand side of (4.12) over all ξ˜WΦ1[0,1].

The next corollary directly results from Theorem 7.

Corollary 4.

For B+ and ξC2[0,1], we have

statB,ημlimμμSμ,σ,ρα,λ,s(ξ;τ)ξ(τ)γμ(τ)ξ(τ)θμ(τ)2ξ ′′(τ)=0.

5. Conclusions with numerical results

In our manuscript, we introduced the operators Sμ,σ,ρα,λ,s(ξ;τ) with the inclusion of the shape parameters λ[1,1], α[0,1] and a positive parameter s. We presented a uniform convergence result and analysed the convergence properties of Sμ,σ,ρα,λ,sξ;τ. In addition, we gave a Voronovskaja-type approximation result with the help of the weighted Bstatistical convergence notion and estimated the rate of the weighted Bstatistical convergence of these operators.

Now, to observe the approximation behaviour of the operators Sμ,σ,ρα,λ,s(ξ;τ), we consider the function ξτ=τ3sinπτcosπτ. From , we can easily say that Sμ,σ,ρα,λ,s(ξ;τ) behaves consistently with the given function ξτ, and we observe that approximation behaviour of Sμ,σ,ρα,λ,s(ξ;τ) shows improvement since an error in the calculations decreases as μ value increases (see ). Furthermore, presents the absolute errors for Sμ,σ,ρα,λ,s(ξ;τ), the αBernstein operator Tμ,αξ;τ given in (2.1), the Stancu variant of αBernstein-Kantorovich operators Sμ,ασ,ρ(ξ;τ) constructed in (Mohiuddine and Özger Citation2020) and the Kantorovich variant of modified Bernstein operators KμM,1(ξ;τ) introduced in (Gupta et al. Citation2019), respectively. It can be deduced from that Sμ,σ,ρα,λ,s(ξ;τ) gives a better approximation for the given function ξτ compared to the operators Tμ,αξ;τ, Sμ,ασ,ρ(ξ;τ) and KμM,1(ξ;τ). Due to the inclusion of shape parameters λ, αand the positive parameter s together within the basis function, it is clear to see that the operators Sμ,σ,ρα,λ,s(ξ;τ) are a generalization of the other operators from the literature, which are listed in . It is imperative to note that it is possible to enhance the approximation behaviour of operators Sμ,σ,ρα,λ,s(ξ;τ) by altering their bases functions or taking the linear and repetitive combinations of the mentioned operators. For example, the q modification of these operators can be examined as future work.

Figure 1. Approximations by Sμ,1,10.9,1,2(τ3sinπτcosπτ;τ) with specific μ values.

Figure 1. Approximations by Sμ,1,10.9,−1,2(τ3sinπτcosπτ;τ) with specific μ values.

Figure 2. Errors of the approximation of Sμ,1,10.9,1,2(τ3sinπτcosπτ;τ) with specific μ values.

Figure 2. Errors of the approximation of Sμ,1,10.9,−1,2(τ3sinπτcosπτ;τ) with specific μ values.

Table 1. Absolute errors for the operators Sμ,σ,ρα,λ,s(ξ;τ), Tμ,α(ξ;τ), Sμ,ασ,ρ(ξ;τ), and KμM,1(ξ;τ) for ξτ=τ3sinπτcosπτ when λ=0.5, α=0.9, σ=1 and ρ=1.

Table 2. Reduction of the operators Sμ,σ,ρα,λ,s(ξ;τ) for specific values of the various parameters.

Acknowledgments

The authors have greatly benefitted from the constructive feedback of the editor and anonymous referees. Therefore, they express their gratitude for the valuable comments provided on the initial draft of this paper, which contributed to enhancing its presentation and readability.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

  • Acu AM, Manav N, Sofonea DF. 2018. Approximation properties of λ-Kantorovich operators. J Inequal Appl. 2018(1):Article ID 202. doi: 10.1186/s13660-018-1795-7.
  • Aktuğlu H, Gezer H, Baytunç E, Atamert MS. 2022. Approximation properties of generalized blending type lototsky-Bernstein operators. J Math Inequal. 16(2):707–728. doi: 10.7153/jmi-2022-16-50.
  • Ansari KJ, Karakılıç S, Özger F. 2022a. Bivariate Bernstein-kantorovich operators with a summability method and related GBS operators. Filomat. 36(19):6751–6765. doi: 10.2298/FIL2219751A.
  • Ansari KJ, Özger F, Ödemiş Özger Z. 2022b. Numerical and theoretical approximation results for schurer-stancu operators with shape parameter λ. Comp Appl Math. 41(4):1–18. doi: 10.1007/s40314-022-01877-4.
  • Aslan R. 2022. On a stancu form szász-mirakjan-kantorovich operators based on shape parameter λ. Adv Studies: Euro-Tbilisi Math J. 15(1):151–166. doi: 10.32513/asetmj/19322008210.
  • Aslan R. 2023. Approximation properties of univariate and bivariate new class $\lambda $-Bernstein–Kantorovich operators and its associated GBS operators. Comp Appl Math. 42(1):Article ID 34. DOI. doi: 10.1007/s40314-022-02182-w.
  • Aslan R. 2024. Rate of approximation of blending type modified univariate and bivariate λ-Schurer-Kantorovich operators. Kuwait J Sci. 51(1):100168. doi: 10.1016/j.kjs.2023.12.007.
  • Ayman-Mursaleen M, Nasiruzzaman M, Rao N, Dilshad M, Nisar KS. 2024. Approximation by the modified $ \lambda $-Bernstein-polynomial in terms of basis function. Math. 9(2):4409–4426. doi: 10.3934/math.2024217.
  • Ayman-Mursaleen M, Rao N, Rani M, Kilicman A, Al-Abied AA, Malik P, Gobithaasan RU. 2023. A Note on Approximation of Blending Type Bernstein–Schurer–Kantorovich Operators with Shape Parameter α. J Math. 2023:1–13. doi: 10.1155/2023/5245806.
  • Baliarsingh P, Kadak U, Mursaleen M. 2018. On statistical convergence of difference sequences of fractional order and related Korovkin type approximation theorems. Quaest Math. 41(8):1117–1133. doi: 10.2989/16073606.2017.1420705.
  • Bărbosu D. 2004. Kantorovich-Stancu type operators. J Inequal Pure Appl Math. 5(3):1–6. doi: 10.18514/MMN.2004.71.
  • Belen C, Mohiuddine SA. 2013. Generalized weighted statistical convergence and application. Appl Math Comput. 219(18):9821–9826. doi: 10.1016/j.amc.2013.03.115.
  • Bell HT. 1973. Order summability and almost convergence. Proc Amer Math Soc. 38(3):548–552. doi: 10.1090/S0002-9939-1973-0310489-8.
  • Bernstein S. 1912. Dámonstration du tháorème de Weierstrass fondeá sur le calcul des probabilitás. Commun Soc Math Kharkow. 13(1):1–2.
  • Bodur M, Manav N, Tasdelen F. 2022. Approximation properties of λ-Bernstein-kantorovich-stancu operators. Math Slovaca. 72(1):141–152. doi: 10.1515/ms-2022-0010.
  • Bohman H. 1952. On approximation of continuous and of analytic functions. Ark Mat. 2(1):43–56. doi: 10.1007/BF02591381.
  • Bustamante J. 2017. Bernstein operators and their properties. Cham: Springer. doi:10.1007/978-3-319-55402-0.
  • Cai Q, Ansari KJ, Temizer Ersoy M, Özger F. 2022. Statistical Blending-Type Approximation by a Class of Operators That Includes Shape Parameters λ and α. Math. 10(7):1149. doi: 10.3390/math10071149.
  • Cai QB, Lian BY, Zhou G. 2018. Approximation properties of λ-Bernstein operators. J Inequal Appl. 2018(61):1–11. doi: 10.1186/s13660-018-1653-7.
  • Chen M-Y, Nasiruzzaman M, Mursaleen MA, Rao N, Kiliçman A. 2022. On shape parameter α based approximation properties and q-statistical convergence of baskakov-gamma operators. Jour Mathematics. 2022:4190732. https://www.hindawi.com/journals/jmath/2022/4190732.
  • Chen X, Tan J, Liu Z, Xie J. 2017. Approximation of functions by a new family of generalized Bernstein operators. J Math Anal Appl. 450(1):244–261. doi: 10.1016/j.jmaa.2016.12.075.
  • Ditzian Z, Totik V. 1987. Moduli of Smoothness. In: Springer series in computational mathematics. Vol. 9, New York, NY: Springer-Verlag. doi: 10.1007/978-1-4612-4778-4.
  • Finta Z. 2011. Remark on Voronovskaja theorem for q-Bernstein operators. Stud Univ Babeş-Bolyai Math. 56(2):335–339.
  • Gezer H, Aktuğlu H, Baytunç E, Atamert MS. 2022. Generalized blending type Bernstein operators based on the shape parameter λ. J Inequal Appl. 2022(96):1–19. doi: 10.1186/s13660-022-02832-x.
  • Gupta V, Tachev G, Acu AM. 2019. Modified Kantorovich operators with better approximation properties. Numer Algor. 81(1):125–149. doi: 10.1007/s11075-018-0538-7.
  • Kadak U. 2018. Modularly weighted four dimensional matrix summability with application to Korovkin type approximation theorem. J Math Anal Appl. 468(1):38–63. doi: 10.1016/j.jmaa.2018.06.047.
  • Kadak U. 2020. Statistical summability of double sequences by the weighted mean and associated approximation results. In: Dutta H, Peters J, editors. Applied mathematical analysis: theory, methods, and applications. Cham: Springer; pp. 61–85.
  • Kadak U, Braha NL, Srivastava HM. 2017. Statistical weighted B-summability and its applications to approximation theorems. Appl Math Comput. 302:80–96. doi: 10.1016/j.amc.2017.01.011.
  • Kadak U, Özger F. 2021. A numerical comparative study of generalized Bernstein-kantorovich operators. Math Found Comput. 4(4):311–332. doi: 10.3934/mfc.2021021.
  • Kantorovich LV. 1930. Sur certains developpements suivant les polynômes de la forme de S.Bernstein I, II. Dokl Akad Nauk SSSR. 563–568, 595–600.
  • Kolk E. 1993. Matrix summability of statistically convergent sequences. Analysis. 13(1–2):77–83. doi: 10.1524/anly.1993.13.12.77.
  • Korovkin PP. 1960. Linear operators and approximation theory. Delhi, India: Hindustan Publishing Corporation.
  • Milovanović GV, Mursaleen M, Nasiruzzaman M. 2018. Modified Stancu type dunkl generalization of szász–Kantorovich operators. RACSAM. 112(1):135–151. doi: 10.1007/s13398-016-0369-0.
  • Mohiuddine SA. 2016. Statistical weighted A-summability with application to Korovkin’s type approximation theorem. J Inequal Appl. 2016(1):Article ID 101. doi: 10.1186/s13660-016-1040-1.
  • Mohiuddine SA, Acar T, Alotaibi A. 2017. Construction of a new family of Bernstein-Kantorovich operators. Math Meth Appl Sci. 40(18):7749–7759. doi: 10.1002/mma.4559.
  • Mohiuddine SA, Özger F. 2020. Approximation of functions by Stancu variant of Bernstein–Kantorovich operators based on shape parameter ${\varvec{\alpha}}$. RACSAM. 114(2):Article ID 70. doi: 10.1007/s13398-020-00802-w.
  • Mursaleen M, Karakaya V, Ertürk M, Gürsoy F. 2012. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl Math Comput. 218(18):9132–9137. doi: 10.1016/j.amc.2012.02.068.
  • Nasiruzzaman M, Rao N, Wazir S, Kumar R. 2019. Approximation on parametric extension of baskakov–durrmeyer operators on weighted spaces. J Inequal Appl. 2019(1):Article ID 103. doi: 10.1186/s13660-019-2055-1.
  • Özger F. 2019. Weighted statistical approximation properties of univariate and bivariate λ-Kantorovich operators. Filomat. 33(11):3473–3486. doi: 10.2298/FIL1911473O.
  • Özger F. 2020. Applications of Generalized Weighted Statistical Convergence to Approximation Theorems for Functions of One and Two Variables. Numer Funct Anal Optim. 41(16):1990–2006. doi: 10.1080/01630563.2020.1868503.
  • Özger F, Aljimi E, Temizer Ersoy M. 2022. Rate of weighted statistical convergence for generalized blending-type Bernstein-kantorovich operators. Mathematics. 10(12):Article ID 2027. doi: 10.3390/math10122027.
  • Özger F, Demirci K, Yıldız S. 2020. Approximation by Kantorovich variant of λ-schurer operators and related numerical results. In: Dutta H, editor. Topics in contemporary mathematical analysis and applications. Boca Raton: CRC Press; p. 77–94. ISBN 9780367532666.
  • Savaş E, Mursaleen M. 2023. Bézier Type Kantorovich q-Baskakov Operators via Wavelets and Some Approximation Properties. Bull Iran Math Soc. 49(5). doi: 10.1007/s41980-023-00815-2.
  • Srivastava HM, Ansari KJ, Özger F, Ödemiş Özger Z. 2021. A Link between Approximation Theory and Summability Methods via Four-Dimensional Infinite Matrices. Math. 9(16):1895. doi: 10.3390/math9161895.
  • Stancu DD. 1968. Approximation of function by a new class of polynomial operators. Rev Roum Math Pures Appl. 13(8):1173–1194.
  • Stieglitz M. 1973. Eine verallgemeinerung des begriffs der fastkonvergenz. Math Japon. 18(1):53–70.
  • Weierstrass VK. 1885. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsberichte der Königlich Preuß ischen Akademie der Wissenschaften zu Berlin. 2:633–639.
  • Ye Z, Long X, Zeng XM, Adjustment algoritheorems for bézier curve and surface, in: The 5. International Conference on Computer Science and Education, 2010, 1712–1716. doi: 10.1109/ICCSE.2010.5593563