84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CAMP: a hierarchical cache architecture for multi-core mixed criticality processors

, , , , &
Pages 317-352 | Received 22 Jul 2023, Accepted 01 Dec 2023, Published online: 19 Dec 2023
 

Abstract

CAMP proposes a hierarchical cache subsystem for multi-core mixed criticality processors, focusing on ensuring worst-case execution time (WCET) predictability in automotive applications. It incorporates criticality-aware locked L1 and L2 caches, reconfigurable at mode change intervals, along with criticality-aware last level cache partitioning. Evaluation using CACOSIM, Moola Multicore simulator, and CACTI simulation tools confirms the suitability of CAMP for keeping high-criticality jobs within timing budgets. A practical case study involving an automotive wake-up controller using the sniper v7.2 architecture simulator further validates its usability in real-world mixed criticality applications. CAMP presents a promising cache architecture for optimized multi-core mixed criticality systems.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 763.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.