73
Views
4
CrossRef citations to date
0
Altmetric
Articles

A computational study of biomagnetic fluid flow in a channel in the presence of obstacles under the influence of the magnetic field generated by a wire carrying electric current

, &
Pages 302-321 | Received 12 Nov 2017, Accepted 19 Nov 2018, Published online: 03 Dec 2018
 

ABSTRACT

In this paper, biomagnetic fluid flow in a three-dimensional channel in the presence of obstacles and under the influence of a magnetic field is studied numerically. The magnetic field is generated by a wire carrying electric current. The mathematical model of biomagnetic fluid dynamics which is consistent with the principles of ferrohydrodynamics and magnetohydrodynamics is used for the problem formulation. A computational grid which accurately covers the magnetic force is used for the discretisation of computational domain. The flow field is studied in the different arrangements of the obstacles and diverse magnetic field strengths. The results show that the flow pattern is drastically influenced by the applied magnetic field. Applying the magnetic field causes a secondary flow that affects the velocity distribution considerably. The magnetic force also reduces the maximum axial velocity. Furthermore, the magnetic field has a considerable impact on the recirculation zones behind the obstacles. The magnetic field makes the recirculation zones smaller. This study indicates that applying the magnetic field increases the axial drag coefficients of the obstacles significantly (in a case, by 40.15%).

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.