790
Views
2
CrossRef citations to date
0
Altmetric
Research Article

An outlook on the controllability of non-instantaneous impulsive neutral fractional nonlocal systems via Atangana–Baleanu–Caputo derivative

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 440-451 | Received 14 May 2023, Accepted 16 Jun 2023, Published online: 07 Jul 2023

Abstract

In this article, we tackle the optimal control and controllability of neutral fractional nonlocal integro-differential equations (NFNIE) of Atangana–Baleanu–Caputo with non-instantaneous impulses. Semigroup theory, noncompactness measurements and fixed point approaches were used to attain the results. An illustration is provided to support the theoretical findings.

1. Introduction

Fractional calculus offers a variety of ways to explain how real and complex numbers work. The fractional derivative outperforms the integral derivative in the model of contemporary issues (Abdeljawad & Baleanu, Citation2016; Anurag Shukla & Pandey, Citation2015; Banas, Citation1980; Caputo & Fabrizio, Citation2015; Gupta, Jarad, Valliammal, Ravichandran & Nisar, Citation2022; Kilbas, Srivastava, & Trujillo, Citation2006; Miller & Ross, Citation1993; Podlubny, Citation1999; Vijayakumar et al., Citation2022; Yang, Citation2019). The intricate connection between the M-L function and fractional calculus takes on a new dimension (Bahaa & Hamiaz, Citation2018; Baleanu & Fernandez, Citation2018; Kaliraj, Thilakraj, Ravichandran, & Nisar, Citation2021; Ma et al., Citation2023; Shukla, Nagarajan, & Pandey, Citation2016; Shukla, Sukavanam, & Pandey, Citation2014). Newton and Leibnitz first proposed the idea of fractional theory in 1695. Both engineering and physical modelling have been used in this procedure (Abdeljawad & Baleanu, Citation2017; Aimene, Baleanu, & Seba, Citation2019; Atangana & Baleanu, Citation2016; Bahaa & Hamiaz, Citation2018; Baleanu & Fernandez, Citation2018; Devi & Kumar, Citation2021; Jothimani, Kaliraj, Panda, Nisar & Ravichandran, Citation2021; Jarad, Abdeljawad, & Hammouch, Citation2018; Kumar & Pandey, Citation2020; Kumar, Kostic, & Pinto, Citation2023; Mahmud, Tanriverdi & Muhamad, Citation2023; Nisar, Jothimani, Kaliraj, & Ravichandran, Citation2021; Ruhil & Malik, Citation2023; Yang, Agarwal, & Liang, Citation2016).

The capacity of a control system to transition from a fixed state to a specific state in a finite amount of time is known as controllability. The principle of controllability was first put forth by R. Kalman in 1960. It is regarded as one of the fundamental and important ideas in control systems. Controllability is a dynamic feature that describes the control performance that can be achieved. In Bedi, Kumar, and Khan (Citation2021), the results of controllability are addressed for the system, ABCDψ{ν(q)ν(q,ν(q))}=Aν(q)+Iν(q)+σ(q,ν(q)),  qi=0m(si,qi+1],ν(q)=κi(q,ν(q)),  qi=1m(si,qi],ν(0)ς(0,ν(0))=ν0, where I signifies a bounded linear operator with a control function u(q). Also, Balasubramaniam (Citation2021) made a deep study on controllability via ABC derivative. Further, in Aimene et al. (Citation2019), the controllability results of semilinear impulsive systems have been examined by AB fractional derivative. In addition, Kumar and Pandey (Citation2020) proposed the existing results of a non-instantaneous impulsive system supported by AB derivative.

Fractional systems are used to describe optimum control issues with various specified limits (Abbas, Citation2021; Agrawal, Citation2004, Citation2008; Aimene et al., Citation2019; Benchohra & Seba, Citation2009; Chalishajar, Ravichandran, Dhanalakshmi & Murugesu, Citation2019; Dineshkumar & Hoon Joo, Citation2023; Dineshkumar, Udhayakumar, Vijayakumar, Shukla, & Sooppy Nisar, Citation2023; Enes & Onur Kıymaz, Citation2023; Dineshkumar, Udhayakumar, Vijayakumar, Nisar, & Shukla, Citation2022; Dineshkumar, Udhayakumar, Vijayakumar, Sooppy Nisar, et al., Citation2022; Tajadodi, Khan, Francisco Gómez-Aguilar, & Khan, Citation2021). Recently, researchers give more attention to fractional derivatives, especially when several applications in biology, economics, science and engineering have appeared (Goufo, Ravichandran & Birajdar, Citation2021; Kavitha Williams, Vijayakumar, Shukla, & Nisar, Citation2022; Kavitha Williams, Vijayakumar, Nisar, & Shukla, Citation2023). The noninstantaneous and instantaneous fractional differential systems of their qualitative behaviours have been debated comprehensively (Gautam & Dabas, Citation2015; Ravichandran, jothimani, Nisar, Mahmoud & Yahia, Citation2022; Kumar & Pandey, Citation2020; Pandey, Das, & Sukavanam, Citation2014).

Motivated by the above literature, we widen to procure some abundant conditions for controllability and optimal controls of the form: (1.1) ABCDp[v(q)h(q,v(q),0qK(q,s,v(s))ds)]=A[v(q)h(q,v(q),0qK(q,s,v(s))ds)]+Bu(q)+f(q,v(q),0qξ(q,s,v(s))ds),  qi=0m(si,qi+1]v(q)=gi(q,v(q)),  qi=1m(si,qi]v(0)+ς(v)=v0V,(1.1) where ABCDp ABC is the derivative of order p&i=0,m¯. In Banach space V, the p resolvent infinitesimal generator of A:DVV is {Tp(q)}q0. For si(qi, qi+1), i=1,2,m ,si meets, 0=q0=s0<q1s1q2<qmsm<qm+1=b. The term {Sp(t)}q0 acts as a solution operator on (V,). Let I=[0,b] and B:UV is a bounded linear operator with control u()L2(I,U). Furthermore, h, f defined over (si, qi+1)×Ω×VV. and ς:PC(I, V)V are given functions with certain assumptions. In addition, the non-instantaneous impulsive functions are defined as gi:(qi, si]×VV, i=1,2,3,m.

We assume that, Kv(q)=0qK(q,s,v(s))ds and ξv(q)=0qξ(q,s,v(s))ds.

2. Basic results

Definition 2.1.

The Kuratowski noncompact measure is mV be a bounded set (Banas, Citation1980), ζ(m)=inf{δ>0:mi=1nmi and diameter (mi)δ}.

Lemma 2.2.

Let m, m1,m2 be bounded subsets on Banach space (Banas, Citation1980),

  1. ζ(m1)=0m1¯ is compact.

  2. m1m2ζ(m1)ζ(m2).

  3. ζ(m+v)=ζ(m), for any vV.

  4. ζ(m1+m2)ζ(m1)+ζ(m2).

  5. ζ(Km1)=|K|ζ(m1);KR.

  6. ζ(m¯)=ζ(m), m¯ is closed set of m.

  7. ζ(m1m2)=max{ζ(m1), ζ(m2)}.

Lemma 2.3.

For the uniform integration of E0={Un}n=1L1(I,V)   UL1(I,Rn) with UnU(q), a.e qI (Aimene et al., Citation2019), ζ({IUn(q)dq}n=1)2Iζ({Un(q)}n=1)dt.

Definition 2.4.

The AB FD with p(0,1) of the Caputo is q(u,v)&IH(u,v),u<v as (Atangana & Baleanu, Citation2016), (2.1) ABCDa+pI(q)=Q(p)1paqI(s)Ep(γ(qs)p)ds,(2.1) and γ=p1p, Ep(), Q(p)=(1p)+pΓ(p).

Definition 2.5.

The AB differentiation of I in the view of RL sense and for IH(u,v),u<v of order p(0,1) as (Atangana & Baleanu, Citation2016), (2.2) ABRDa+pI(q)=Q(p)1pddpaqI(s)Ep(γ(qs)p)ds.(2.2) AB integral is, (2.3) ABIa+p=1pQ(p)I(q)+pQ(p)Γ(p)aq(qs)p1I(s)ds.(2.3)

Remark 2.6.

Here, the two-parameter generalizations of M-L function: Ep(v):=k=0vkΓ(pk+1),vC,   p>0.Ep,q(v):=k=0vkΓ(pk+q),p>0,  q>0.

In particular, Ep,1(v)=Ep(v),vC.L(ABCDa+pg(q))=Q(p)1pL(Ep(γqp))(sL(g(q))g(0))L(qq1Ep,q(γqp))=spqsp+γL(qp)=Γ(p+1)sp+1.

Definition 2.7.

The sectorial operator A is (Pazy, Citation1983):

(1) A is closed & linear.

(2) Let ςR  &  α[π2, π],  R>0, s.t.,

  1. R(δ, A)R|δς|, δα,ς.

  2. α,ς={δC:δς,arg(δς)<α}A.

Remark 2.8.

For the mild solution of Equation(1.1), consider a subsequent Cauchy problem (Pazy, Citation1983) ABCDqpv(q)=Av(q)+f(q),v(0)=v0V, and mild solution is, V(q)=GTp(q)v0+KG(1p)Q(p)Γ(p)0q(qs)p1f(s)ds+PG2Q(p)0qSp(qs)f(s)ds, where 0<p<1 and qI. G=ζ(ζIA)1,  K=γA(ζIA)1 are linear operators with ζ=Q(p)1p and, Tp(q)=Ep(Kqp)=12πiΓeλqλp1(λpIK)1dλSp(q)=qp1Ep,p(Kqp)=12πiΓeλq(λpIK)1dλ.

Definition 2.9.

The problem Equation(1.1) is called controllable if for all ςΩ and v1V, and a control uL2(I,U) shows the mild solution of v() of (1.1)&v(b)=v1 on I (Aimene et al., Citation2019).

Theorem 2.10.

Let SV, is a nonempty, closed, convex & bounded set. Let Φ:SS is continuously called K set contraction (Banas, Citation1980), (2.4) ζ(Φ(D))Kζ(D),(2.4)

Then Φ has a fixed point.

Definition 2.11.

The mild solution of Equation(1.1) is v()Ωb if v(q)=ς(q) on v(q)V,qI shows V(q)=gi(q,v(q),q(qi,si],i=1,2,m, if v(q)={GTp(q)[v0ς(v)h(0, v(0),0)]+h(q,v(q),Kv(q))+KG(1p)Q(p)Γ(p)0q(qs)p1[Bu(s)+f(s,v(s),ξv(s))]ds+PG2Q(p)0qSp(qs)[Bu(s)+f(s,v(s),ξv(s))]ds,     q[0,q1]GTp(qsi)[gi(si,v(si))h(si,v(si),Kv(si))]+h(q,v(q),Kv(q))+KG(1p)Q(p)Γ(p)siq(qs)p1[Bu(s)+f(s,v(s),ξv(s))]ds+PG2Q(p)siqSp(qs)[Bu(s)+f(s,v(s),ξv(s))]ds,     q(si,qi+1], i=1,m¯.

3. Main sequels

If AAq(α0,Ξ0), R  &  C are +ve constants, provided Tp(q)ReΞq, Sp(q)CeΞq(1+qp1), for all q>0,Ξ>Ξ0. Let RT=supq0Tp(q),RS=supq0CeΞq(1+qp1).

Let Tp(q)RT, Sp(q)qp1RS:

  • H0 For Rh, Rh*>0 and h:I×Ω×VV is continuous,

  1. h(q,v1,v2)h(q,v3,v4)Rhv1v3+Rh*v2v4, For every v1,v3Ω and v2,v4V.

  2. h(q,u,v)Rh**(1+n)η, Rh**>0.

  • H1 Let f:I×Ω×VV. For Rf, Rf*>0,

f(q,v1,v2)f(q,v3,v4)Rfv1v3+Rf*v2v4, for every v1,v3Ω and v2,v4V.

  • H2 Let RK>0 with K(q,s,y1)K(q,s,y2)RKy1y2, y1,y2Ω.

  • H3 Let Rξ>0 with ξ(q,s,u)ξ(q,s,v)Rξuv, u,vΩ.

  • H4 For f:I×Ω×VV fulfils f(q,v,ξ)Rf**, qI,vΩ and ξV where Rf**>0.

  • H5 W:L2(I,U)V and Wu=KG(1p)Q(p)Γ(p)siqi+1(bs)p1Bu(s)ds+PG2Q(p)siqi+1Sp(bs)Bu(s)ds.

  • H6 Let gi:(qi,si]×ΩV, for each i=1,m¯,

  1. gi(q,v1)gi(q,v2)Rgiv1v2, for each v1,v2Ω, q(qi,si], for constants Rgi>0.

  2. gi(q,v)Rgi*η+δ, for some constants Rgi*>0.

  • H7 Let G& K are bounded linear operators, GRG and KRK, RG>0, RK>0.

  • H8 Let Lf>0 and e1,e2Ω, any bounded sets, we have ζ(f(q,e1,e2))Lf(ζ(e1)+ζ(e2)).

Further, let us assume: Rp=RGQ(p)bp[RK(1p)Γ(p+1)+RGRS]Rg=maxi=1,m¯Rgiκ=maxi=1,m¯supqIgi(q,0).

Theorem 3.1.

Let H0H8 holds, then Equation(1.1) is controllable on I shows: (3.1) Lb(1+n)+2(RB*Np+Lf(1+n)Rp)<1,(3.1) and Np=Lb(1+n)+2RW*+Lf(1+n)Rp.

Proof.

Let Φ:ΩbΩb is, Φ(v)(q)={GTp(q)[v0ς(v)h(0,v(0),0)]+h(q),v(q),Kv(q))+KG(1p)Q(p)Γ(p)0q(qs)p1[Buv(s)+f(s,v(s),ξv(s))]ds+PG2Q(p)0qSp(qs)[Buv(s)+f(s,v(s),ξv(s))]ds,  for  q[0,q1], i=0gi(q,v(q)),  for  q(qi,si], i1GTp(qsi)[gi(si,v(si))h(si,v(si),Kv(si))]+h(q),v(q),Kv(q))+KG(1p)Q(p)Γ(p)siq(qs)p1[Buv(s)+f(s,v(s),ξv(s))]ds+PG2Q(p)siqSp(qs)[Buv(s)+f(s,v(s),ξv(s))]ds,  for  q(si,qi+1], i=1,m¯.

By using H5, we get (3.2) u(v)(q)=W1{v(b)GTp(b)[v0ς(v)h(0,v(0),0)]h(b,v(b),Kv(b))KG(1p)Q(p)Γ(p)0l(ls)p1f(s,v(s),ξv(s))dsPG2Q(p)0lSp(ls)f(s,v(s),ξv(s))ds,  for  q[0,q1], i=00,  for  q(qi,si]  v(b)GTp(lsi)[gi(si,v(si))h(si,v(si),Kv(si))]h(b,v(b),Kv(b))KG(1p)Q(p)Γ(p)sil(ls)p1f(s,v(s),ξv(s))dsPG2Q(p)silSp(ls)f(s,v(s),ξv(s))ds,  for  q(si,qi+1],i=1,m¯.(3.2)

Set Ωκ={vΩb:vΩbκ}. So, Ωκ is convex and closed subset of Ωb.

Step 1: Φ:ΩκΩκ meets the assumption of Theorem 2.10.

By (3.2) and H4, H6, H7, we get u(v)(q)W1{v(b)+GTp(b)[v0+ς(v)+h(0,v(0),0)]+h(b,v(b),Kv(b))+KG(1p)Q(p)Γ(p)0l(ls)p1f(s,v(s),ξv(s))ds+pG2Q(p)0lSp(ls)f(s,v(s),ξv(s))ds,  t[0,t1]vb+GTp(lsi)[gi(si,v(si))+h(si,v(si),Kv(si))]+h(b,v(b),Kv(b))+KG(1p)Q(p)Γ(p)sil(ls)p1f(s,v(s),ξv(s))ds+pG2Q(p)silSp(ls)f(s,v(s),ξv(s))ds,  q(si,qi+1], i=1,m¯.

Thus, u(v)(q)RW*{v(b)+RGRT[v0+ς(v)+h(0,v(0),0)]+h(b,v(b),Kv(b))+RKRG(1p)Q(p)Γ(p+1)Rf**bp+RG2pQ(p)Rf**RS0l(ls)p1ds,q[0,q1]v(b)+RGRT[(Rh**(1+n)+Rgi*)η+δ]+Rh**(1+n)η+RGRf**bpQ(p)[RK(1p)Γ(p+1)+RGRS],  q(si,qi+1], i=1,m¯.

Let R0=RGRT[ς(0)+h(0,ς(0),0)],  Ξ1, Ξ2 as positive number, s.t., (3.3) u(v)(q)RW*{v(b)+R0+Rh**(1+n)η+Rf**Rp:=Ξ1,  q[0,q1],v(b)+RGRT[(Rh**(1+n)+Rgi*)η+δ]+Rh**(1+n)η+Rf**Rp:=Ξ2,  q(si,qi+1], i=1,m¯.(3.3)

Then for each vΩκ, Equation(3.3) yields Φ(v)(q){R0+Rh**(1+n)η+RGQ(p)bp[RB*Ξ1+Rf**](RK(1p)Γ(p+1)+RGRS)κ, q[0,q1]RGRT[(Rh**(1+n)+Rgi*)η+δ]+Rh**(1+n)η+RGQ(p)bp[RB*Ξ2+Rf**](RK(1p)Γ(p+1)+RGRS)κ, q(si,qi+1], i=1,m¯.  Φ(v)κ implies Φ(Ωκ)Ωκ.

Step 2: Φ on Ωκ is continuous. For t[0,q1] and {vn}nN with vnv in Ωκ, provided Φ(vn)(q)Φ(v)(q)h(q,vn(q),Kvn(q))h(q,v(q),Kv(q))+KG(1p)Q(p)Γ(p)0q(qs)p1[Buvn(s)uv(s)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s))]ds+PG2Q(p)0qSp(qs)[Buvn(s)uv(s)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s))]ds h(q,vn(q),Kvn(q))h(q,v(q),Kv(q))+RKRG(1p)Q(p)Γ(p)(×)0q(qs)p1(RB*(RKRG(1p)Q(p)Γ(p)0b(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ+pRG2Q(p)RS0b(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s)))ds+pRG2Q(p)RS(×)0q(qs)p1(RB*(MKMG(1p)Q(p)Γ(p)0b(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ+pRG2Q(p)RS0b(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s)))ds.

For q(qi,si], i1, Φ(vn)(q)Φ(v)(q)gi(q,vn(q))gi(q,v(q))Rgivn(q)v(q).

Further, for every q(si,qi+1],i=1,m¯, Φ(vn)(q)Φ(v)(q)RGRTgi(si,vn(si))h(si,vn(si),Kvn(si))gi(si,v(si))h(si,v(si),Kv(si))+h(q,vn(q),Kvn(q))h(q,v(q),Kv(q))+KG(1p)Q(p)Γ(p)(×)qiq(qs)p1[Buvn(s)uv(s)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s))]ds+PG2Q(p)qiqSp(qs)[Buvn(s)uv(s)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s))]dsRGRTgi(si,vn(si))h(si,vn(si),Kvn(si))gi(si,v(si))h(si,v(si),Kv(si))+h(q,vn(q),Kvn(q))h(q,v(q),Kv(q))+RKRG(1p)Q(p)Γ(p)(×)qiq(qs)p1(RB*(RKRG(1p)Q(p)Γ(p)qib(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ+pRG2Q(p)RSqib(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s)))ds+pRG2Q(p)RS(×)qiq(qs)p1(RB*(RKRG(1p)Q(p)Γ(p)qib(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ+pRG2Q(p)RSqiq(bΞ)p1f(Ξ,vn(Ξ),ξvn(Ξ))f(Ξ,v(Ξ),ξv(Ξ))dΞ)+f(s,vn(s),ξvn(s))f(s,v(s),ξv(s)))ds.

Hence, limnΦ(vn)=Φ(v) in Ξκ implies continuous of Φ.

Step 3: {Φv:vΩκ} is equicontinuous.

Choose vΩκ&λ1, λ2[0,q1] with λ1<λ2, (Φv)(λ2)(Φv)(λ1)RGTp(λ2)Tp(λ1)v0ς(v)h(0,v(0),0)+h(λ2,v(λ2),Kv(λ2))h(λ1,v(λ1),Kv(λ1))+RKRG(1p)Q(p)Γ(p)(RB**Ξ1+Rf**)0λ1((λ2s)p1(λ1s)p1)ds+pRG2Q(p)(RB**Ξ1+Rf**)0λ1(Sp(λ2s)Sp(λ1s))ds +RKRG(1p)Q(p)Γ(p)(RB**Ξ1+Rf**)λ1λ2(λ2s)p1ds+pRG2Q(p)(RB**Ξ1+Rf**)λ1λ2Sp(λ2s)ds.

Further, for λ1, λ2(si,qi+1], i=1,m¯, (Φv)(λ2)(Φv)(λ1)RGTp(λ2)Tp(λ1)gi(si,v(si))h(si,v(si),Kv(si))+h(λ2,v(λ2),Kv(λ2))h(λ1,v(λ1),Kv(λ1))+RKRG(1p)Γ(p)Q(p)(RB**Ξ2+Rf**)qiλ1((λ2s)p1(λ1s)p1)ds+pRG2Q(p)(Rf**+RB**Ξ2)qiλ1(Sp(λ2s)Sp(λ1s))ds+RKRG(1p)Γ(p)Q(p)(RB**Ξ2+Rf**)λ1λ2(λ2s)p1ds+pRG2Q(p)(RB**Ξ2+Rf**)λ1λ2Sp(λ2s)ds, 0 as λ2λ1, equicontinuity of Φ(Ωκ).

Step 4: Φ:ΩκΩκ,a set contraction.

For any DΩκ,a countable set {vn}n=1D exists, then ζ(Φ(D)(q))2ζ({vn}n=1) by the equicontinuity on Ωκ. By H8, and for any q[0,q1], (3.4) ζ({KG(1p)Q(p)Γ(p)0q(qs)p1f(s,vn(s),ξvn(s))ds}n=1)2RKRG(1p)Q(p)Γ(p)0q(qs)p1(Lf(sup0τsζ({vn(τ)})n=1+bζ({vn(τ)})n=1))ds2RKRG(1p)Q(p)Γ(p)bp(Lf(1+n)ζ({vn(τ)}n=1)).(3.4)

Similarly, (3.5) ζ({pRG2Q(p)0qSp(qs)f(s,vn(s),ξvn(s))ds}n=1)2RG2Q(p)bpRSLf(1+n)ζ({vn}n=1).(3.5)

Using Equation(3.4), Equation(3.5), we get ζ({uvn(q)}n=1) =ζ({w1[v(b)GTp(b)[v0ς(v)h(0,v(0),0)]h(b,v(b),Kv(b)) KG(1p)Γ(p)Q(p)0l(ls)p1f(s,v(s),ξv(s))dspG2Q(p)0lSp(ls)f(s,vn(s),ξvn(s))ds]}n=1) 2RW*bp(RKRG(1p)Q(p)Γ(1+p)+RG2Q(p)RS)Lf(1+n)ζ({vn}n=1) (3.6) 2RW*RpLf(1+n)ζ({vn}n=1)(3.6) (3.7) Npζ(D).(3.7)

By Equation(3.4)–Equation(3.6), we get (3.8) ζ(Φ(D)(q))=ζ({Φ(vn)(q)}n=1)=ζ({GTp(q)[v0ς(v)h(0,v(0),0)]+h(q,vn(q),Kvn(q))+KG(1p)Q(p)Γ(p)0q(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+pG2Q(p)0qSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]}n=1)Lb(1+n)ζ({vn(q)}n=1)+2(RKRG(1p)Q(p)Γ(p)0q(qs)p1[RB*ζ({uvn(s)}n=1)+ζ({f(s,vsn,ξvn(s))}n=1ds)]ds+pMG2Q(p)RS0q(qs)p1[RB*ζ({uvn(s)}n=1)+ζ({f(s,vsn,ξvn(s))}n=1ds)]ds)[Lb(1+n)+2bp(RB*Np+Lf(1+n))(RKRG(1p)Q(p)Γ(p+1)+MG2Q(p)RS)]ν(D).(3.8)

Also, for q(qi,si] ,ζ(gi(si,v(si))Lgiζ(D),  i=1,m¯ is obviously hold.

Therefore, Φv(b)=v1, (1.1) is controllable. □

4. Optimal control

Let us focus the Lagrange problem [LP] (Liu & Wang, Citation2017): a control (v0,u0)C1v(I,Y)×Uad s.t. J(v0,u0)J(v,u), uUad and (4.1) J(v,u)=0TL(q,v(q),u(q))dt.(4.1)

Consider the multivalued maps u():I2Y/{ϕ}, where Y be a separable reflexive Banach space. Let us denote that, Ψu={vnΩK;vnis the solution to uUad}

We assume,

H9

  1. L(q,,) is semi-continuous on Y×U for qI.

  2. L(q,v,) is convex on U for all v1,v2Y, qI.

  3. L:I×Y×UR{} is Borel measurable.

  4. Let K0, l>0, ζ is non-negative &  ζL(I,R),

L(q,v,u)ζ(q)+KvY+luU.

Theorem 4.1.

If [H1H9] holds. Then, the [LP] has optimal pair.

Proof.

If inf{J(v,u)|(v,u)C1v(I,Y)×Uad}=+, then the proof is: inf{J(v,u)|(v,u)C1v(I,Y)×Uad}=γ<+

By [H9] (iv), γ>. By infimum defn a minimizing sequence {(vn,un)}Aad{(v,u)|v  is a soln of(1.1)to  u  Uad}, s. t. J(vn,un)γ as n+.

Since {un}UadLP(I,U)nN is bounded, a subsequence, {un}, u0LP(I,U) s. t. unu0 in LP(I,U). Since Uad is convex, closed and u0Uad, by Mazur lemma.

From Step 1 and Step 3 in Theorem 3.1, the {vn} states that uniformly bounded and equicontinuous. Now, we need to prove {vn}n=1 is relatively compact. From Equation(1.1), we have vn(q)={GTp(q)[v0ς(v)h(0,v(0),0)]+h(q,vn(q),Kvn(q))+KG(1p)Q(p)Γ(p)0q(qs)p1×[Buvn(s)+f(s,vn(s),ξvn(s))]ds+pG2Q(p)0qSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds,q[0,q1],i=0GTp(qsi)[gi(si,vn(si))h(si,vn(si),Kvn(si))]+h(q,vn(q),Kvn(q))+KG(1p)Q(p)Γ(p)siq(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+pG2Q(p)siqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds,q(si,qi+1],i=0,m¯. where, vn(q)=(Φ1vn)(q)+(Φ2vn)(q)=(Φvn)(q)

To prove (Ξvn)(q)={Φ2vn(q);vn(q)Ωk} is relatively compact PC(I,V)  qI. For any uU,qI,vnΩK, and ϵ(0,qisi), we define (Φ2vn)(q)={KG(1p)Q(p)Γ(p)0q(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+pG2Q(p)0qSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds,q[0,q1],i=0KG(1p)Q(p)Γ(p)siq(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+pG2Q(p)siqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds,q(si,qi+1],i=0,m¯.

By the property of Uad, [H1], [H3], [H4] the set Πϵ={Buvn(s)+f(s,vn(s),ξvn(s));0siqiϵ} is relatively compact. By Lemma 2.3, we get (Φ2ϵvn)(q)Πϵ¯ for every qI. Hence Ξϵ(q)={(Φ2ϵvn)(q):vnΩK} is relatively compact in PC(I,V).

From [H0][H8], for q(0,q1] (Φ2vn)(q)(Φ2ϵvn)(q)KG(1p)Q(p)Γ(p)0q(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]dsKG(1p)Q(p)Γ(p)0qϵ(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds +PG2Q(p)0qSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]dsPG2Q(p)0qSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]dsKG(1p)Q(p)Γ(p)qϵq(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+PG2Q(p)qϵqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds(RKRG(1p)Q(p)γ(p)+pRG2Q(p)Rs)[RBw1+Rf]qϵq(qs)p1ds

For q(qi,si], i1, (Φ2vn)(q)(Φ2ϵvn)(q)KG(1p)Q(p)Γ(p)qiq(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]dsKG(1p)Q(p)Γ(p)qiqϵ(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+PG2Q(p)qiqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]dsPG2Q(p)qiqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]dsKG(1p)Q(p)Γ(p)qϵq(qs)p1[Buvn(s)+f(s,vn(s),ξvn(s))]ds+PG2Q(p)qϵqSp(qs)[Buvn(s)+f(s,vn(s),ξvn(s))]ds(RKRG(1p)Q(p)γ(p)+pRG2Q(p)Rs)[RBw2+Rf]qϵq(qs)p1ds leads to limϵ0(Φ2vn)(q)(Φ2ϵvn)(q)=0. Hence Ξ(q) is relatively compact in PC(I,V)qI. From [H0] and [H6], Φ1vn is bounded and equicontinuous in ΩK. By Equation(3.8), we have ζ(vn)PC(I,V)[Lb(1+n)+2bp(RB*Np+Lf(1+n))(RKRG(1p)Q(p)Γ(p+1)+RG2Q(p)RS)]ζ(vn)PC(I,V) which implies that ζ({vn}n=1)=0 by using Equation(3.1).

{vn}n=1 is relatively compact in PC(I, V) and uUad. a subsequence v0ΩK of {vn}n=1 such that limnvnv0.

By [H0]–[H4], [H6] and Lebesgue theorem, v˜(q)={GTp(q)[v0ς(v)h(0,v(0),0)]+h(q,v˜(q),Kv˜(q))+KG(1p)Q(p)Γ(p)0q(qs)p1×[Buv˜(s)+f(s,v˜(s),ξv˜(s))]ds+pG2Q(p)0qSp(qs)[Buv˜(s)+f(s,v˜(s),ξv˜(s))]ds,q[0,q1],i=0Gqp(qsi)[gi(si,v˜(si))h(si,v˜(si),Kv˜(si))]+h(q,v˜(q),Kv˜(q))+KG(1p)Q(p)Γ(p)siq(qs)p1[Buv˜(s)+f(s,v˜(s),ξv˜(s))]ds+pG2Q(p)siqSp(qs)[Buv˜(s)+f(s,v˜(s),ξv˜(s))]ds,q(si,qi+1],i=0,m¯.

So, v˜Ψ(u) is continuously embedded in L(I,R), by [H9] & Balder’s theorem (Balder, Citation1987), J(u)=limn0TL(q,vn(q),u(q))dt0TL(q,v˜(q),u(q))dt=J(v˜,u)J(u). which shows J(v˜,u)J(u). Hence, J(u) attains its minimum at v˜Ψ(u) for every uUad.

Consequently, take u0Uad, i.e. J(u)=infuUadJ(u). Due to the boundedness of {un}n=0 in LP(I,Y) for P>1, for a subsequence u0LP(I,U) and by relative compactness of vn is a subsequence v˜0PC(I,V) as limnvnv˜0. Since PC(I,V)L(I,R) is continuous with [H9], we get infuUadJ(u)=limn0TL(q,vn(q),un(q))dq0TL(q,v˜0(q),u0(q))dt=J(v˜0,u0)=J(u0)infuUadJ(u), J(u)=infuUadJ(u), J attains its minimum at u0Uad, J(v˜0,u0)=infuUadJ(u)=inf(v,u)AadJ(v,u) L admits optimal pair (v˜0,u0)Aad.

5. Example

Let us consider the partial FDE: (5.1) ABCDp[Ξ(ν, ϵ)14eν1+eν+0ν120esΞ(ν, ϵ)ds]=2ϵ2[Ξ(ν, ϵ)14eν1+eν+0ν120esΞ(ν, ϵ)ds]+Bu(ν, ϵ)+19eν1+eν+0ν136esΞ(ν, ϵ)ds,  ν(0,15] (45,1]αΞ(ν, 0)=Ξ(ν, π)=0, ν[0,1]Ξ(ν, ϵ)=e(5ν15)9 |Ξ(ν, ϵ)|1+|Ξ(ν, ϵ)|,  ν(0,15] (45,1]Ξ(0, ϵ)+i=1515iΞ(1i, ϵ)=Ξ0(ϵ),  ϵ[0,1].(5.1)

Let V=L2[0, π], A:D(A)VV define as AI=I, ID(A) and D(A)={IV, I,I absolutely continuous, IV, I(0)=I(π)=0}.

Then, AI=i=1n2I, In, In(s)=2πsin(ns) and the Eigenvectors of A is orthogonal set and they are given by nN. Therefore, the generator of A is T(ν)ν0 in V, expressed as T(ν)I=i=1en2νI, In,  I,  InV, ν>0,

This makes that AAp(σ0, I0). In addition to that, Tp(ν)MT, for every ν[0,1].

By putting, v(q)=Ξ(ν,), h(q,v(q),0qK(q,s,v(s))ds)=14eν1+eν+0ν120esΞ(ν, ϵ)ds, gi(q,v(q))=e(5ν15)9 |Ξ(ν, ϵ)|1+|Ξ(ν, ϵ)|, ς(v)=i=1515iΞ(1i, ϵ).

Equation Equation(5.1) represents Equation(1.1), fulfils (HO)–(H8). Hence, Equation(5.1) is controllable.

6. Conclusions

In this paper, we explored the controllability and optimal control of NFIE with noninstantaneous impulses. The controllability findings are backed up by the set contraction principle perfectly. Fixed point and noncompact measure methods are used to achieve the results. An appropriate example is used to describe the results. We have presented some important properties of AB operators, which will be useful for further study in this direction.

Acknowledgements

This study is supported via funding from Prince Sattam Bin Abdulaziz University under project number (PSAU/2023/R/1444). The authors are thankful to the Deanship of Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study is supported via funding from Prince Sattam Bin Abdulaziz University under Project Number (PSAU/2023/R/1444). The authors are thankful to the Deanship of Scientific Research at University of Bisha for supporting this work through the Fast-Track Research Support Program.

References

  • Abbas, M. I. (2021). Nonlinear Atangana–Baleanu fractional differential equations involving the Mittag-Leffler integral operator. Memoirs on Differential Equations and Mathematical Physics, 83, 1–11.
  • Abdeljawad, T., & Baleanu, D. (2016). Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Advances in Difference Equations, 2016(1), 1–18. doi:10.1186/s13662-016-0949-5
  • Abdeljawad, T., & Baleanu, D. (2017). Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. Journal of Nonlinear Sciences and Applications, 10(3), 1098–1107. doi:10.22436/jnsa.010.03.20
  • Agrawal, O. P. (2004). A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 38(1–4), 323–337. doi:10.1007/s11071-004-3764-6
  • Agrawal, O. P. (2008). Fractional optimal control of a distributed system using eigenfunctions. Journal of Computational and Nonlinear Dynamics, 3(2), 1–6. doi:10.1115/1.2833873
  • Aimene, D., Baleanu, D., & Seba, D. (2019). Controllability of semilinear impulsive Atangana–Baleanu fractional differential equations with delay. Chaos Solitons Fractals, 128, 51–57. doi:10.1016/j.chaos.2019.07.027
  • Anurag Shukla, N. S., & Pandey, D. N. (2015). Approximate controllability of semilinear fractional control systems of order α ∈ (1,2]. 2015 proceedings of the conference on control and its applications, 175–180.
  • Atangana, A., & Baleanu, D. (2016). New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Science, 20(2), 763–769. doi:10.2298/TSCI160111018A
  • Bahaa, G. M., & Hamiaz, A. (2018). Optimality conditions for fractional differential inclusions with nonsingular Mittag-Leffler kernel. Advances in Differential Equations, 2018, 1–26. doi:10.1186/s13662-018-1706-8
  • Balasubramaniam, P. (2021). Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations. Chaos Solitons Fractals, 152, 111276. doi:10.1016/j.chaos.2021.111276
  • Balder, E. (1987). Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional. Nonlinear Analysis: Real World Applications, 11(12), 1399–1404. doi:10.1016/0362-546X(87)90092-7
  • Baleanu, D., & Fernandez, A. (2018). On some new properties of fractional derivatives with Mittag-Leffler kernel. Communications in Nonlinear Science and Numerical Simulation, 59, 444–462. doi:10.1016/j.cnsns.2017.12.003
  • Banas, J. (1980). On measures of noncompactness in Banach spaces. Commentationes Mathematicae Universitatis Carolinae, 21(1), 131–143. doi: http://eudml.org/doc/17021
  • Bedi, P., Kumar, A., & Khan, A. (2021). Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives. Chaos, Solitons & Fractals, 150, 111153. doi:10.1016/j.chaos.2021.111153
  • Benchohra, M., & Seba, D. (2009). Impulsive fractional differential equations in Banach spaces. Electronic Journal of Qualitative Theory of Differential Equations, 8(8), 1–14. doi:10.14232/ejqtde.2009.4.8
  • Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1, 73–85. doi:10.12785/pfda/010201
  • Chalishajar, D., Ravichandran, C., Dhanalakshmi, S., & Murugesu, R. (2019). Existence of fractional impulsive functional integro-differential equations in Banach spaces. Applied System Innovation, 2(2), 18. doi:10.3390/asi2020018
  • Devi, A., & Kumar, A. (2021). Existence and uniqueness results for integro fractional differential equations with Atangana–Baleanu fractional derivative. Journal of Mathematical Extension, 15(5), 1–24. doi:10.30495/JME.SI.2021.2128
  • Dineshkumar, C., & Hoon Joo, Y. (2023). A note concerning to approximate controllability of Atangana–Baleanu fractional neutral stochastic integro-differential system with infinite delay. Mathematical Methods in the Applied Sciences, 46(9), 9922–9941. doi:10.1002/mma.9093
  • Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K. S., & Shukla, A. (2022). A note concerning to approximate controllability of Atangana–Baleanu fractional neutral stochastic systems with infinite delay. Chaos, Solitons & Fractals, 157, 111916. doi:10.1016/j.chaos.2022.111916
  • Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., & Sooppy Nisar, K. (2023). Discussion on the approximate controllability of nonlocal fractional derivative by Mittag-Leffler kernel to stochastic differential systems. Qualitative Theory of Dynamical Systems, 22(1), 27. doi:10.1007/s12346-022-00725-4
  • Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Sooppy Nisar, K., Shukla, A., Abdel-Aty, A.-H., … Mahmoud, E. E. (2022). A note on existence and approximate controllability outcomes of Atangana–Baleanu neutral fractional stochastic hemivariational inequality. Results in Physics, 38, 105647. doi:10.1016/j.rinp.2022.105647
  • Enes, A., Onur Kıymaz I. (2023). New generalized Mellin transform and applications to partial and fractional differential equations. International Journal of Mathematics and Computer in Engineering, 1(1), 1–21. https://doi.org/10.2478/ijmce-2023-0004
  • Gautam, G. R., & Dabas, J. (2015). Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses. Applied Mathematics and Computation, 259, 480–489. doi:10.1016/j.amc.2015.02.069
  • Goufo, E. F. D., Ravichandran, C., & Birajdar, G. A. (2021). Self-similarity techniques for chaotic attractors with many scrolls using step series switching. Mathematical Modelling and Analysis, 26(4), 591–611. doi:10.3846/mma.2021.13678
  • Gupta, V., Jarad, F., Valliammal, N., Ravichandran, C., & Nisar, K. S. (2022). Existence and uniqueness of solutions for fractional nonlinear hybrid impulsive system. Numerical Methods for Partial Differential Equations, 38(3), 359–371. doi:10.1002/num.22628
  • Jarad, F., Abdeljawad, T., & Hammouch, Z. (2018). On a class of ordinary differential equations in the frame of Atangana–Baleanu derivative. Chaos Solitons Fractals, 117, 16–20. doi:10.1016/j.chaos.2018.10.006
  • Jothimani, K., Kaliraj, K., Panda, S. K., Nisar, K. S., & Ravichandran, C. (2021). Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations & Control Theory, 10(3), 619–631. doi:10.3934/eect.2020083
  • Kaliraj, K., Thilakraj, E., Ravichandran, C., & Nisar, K. S. (2021). Controllability analysis for impulsive integro-differential equation via Atangana–Baleanu fractional derivative. Mathematical Methods in the Applied Sciences, 2021, 1–10. doi:10.1002/mma.7693
  • Kavitha Williams, W., Vijayakumar, V., Nisar, K. S., & Shukla, A. (2023). Atangana–Baleanu semilinear fractional differential inclusions with infinite delay: Existence and approximate controllability. Journal of Computational and Nonlinear Dynamics, 18(2), 1–25. doi:10.1115/1.4056357
  • Kavitha Williams, W., Vijayakumar, V., Shukla, A., & Nisar, K. S. (2022). An analysis on approximate controllability of Atangana–Baleanu fractional semilinear control systems. International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 1–12. doi:10.1515/ijnsns-2021-0371
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. New York, Amsterdam: Elsevier Science Inc.
  • Kumar, A., & Pandey, D. N. (2020). Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions. Chaos Solitons Fractals, 132, 109551. doi:10.1016/j.chaos.2019.109551
  • Kumar, V., Kostic, M., & Pinto, M. (2023). Controllability results for fractional neutral differential systems with non-instantaneous impulses. Journal of Fractional Calculus and Applications, 14, 1–20. doi: http://mathfrac.org/Journals/JFCA/
  • Liu, S., & Wang, J. (2017). Optimal controls of systems governed by semilinear fractional differential equations with not instantaneous impulses. Journal of Optimization Theory and Applications. 174, 455–473. doi:10.1007/s10957-017-1122-3
  • Ma, Y.-K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., & Nisar, K. S. (2023). Approximate controllability of Atangana–Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions. Ain Shams Engineering Journal, 14(3), 101882. doi:10.1016/j.asej.2022.101882
  • Mahmud, A. A., Tanriverdi, T., & Muhamad, K. A. (2023). Exact traveling wave solutions for (2 + 1)-dimensional Konopelchenko–Dubrovsky equation by using the hyperbolic trigonometric functions methods. International Journal of Mathematics and Computer in Engineering, 1(1), 1–14. doi:10.2478/ijmce-2023-0002
  • Miller, K., & Ross, B. (1993). An introduction to the fractional calculus and differential equations. New York: John Wiley.
  • Nisar, K. S., Jothimani, K., Kaliraj, K., & Ravichandran, C. (2021). An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos Solitons Fractals, 146, 110915. doi:10.1016/j.chaos.2021.110915
  • Pandey, D. N., Das, S., & Sukavanam, N. (2014). Existence of solutions for a second order neutral differential equation with state dependent delay and not instantaneous impulses. International Journal of Nonlinear Sciences, 18, 145–155. IJNS.2014.10.15/833
  • Pazy, A. (1983). Semigroups of linear operators and applications to partial differential equations. New York: Springer-Verlag.
  • Podlubny, I. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego: Academic Press.
  • Ravichandran, C., Jothimani, K., Nisar, K. S., Mahmoud, E. E., & Yahia, I. S. (2022). An interpretation on controllability of Hilfer fractional derivative with nondense domain. Alexandria Engineering Journal, 61(12), 9941–9948. doi:10.1016/j.aej.2022.03.011
  • Ruhil, S., & Malik, M. (2023). Inverse problem for the Atangana–Baleanu fractional differential equation. Journal of Inverse and Ill-Posed Problems. doi:10.1515/jiip-2022-0025
  • Shukla, A., Nagarajan, S., & Pandey, D. N. (2016). Complete controllability of semilinear stochastic systems with delay in both state and control. Mathematical Reports, 18(2), 257–259. doi: http://repository.iitr.ac.in/handle/123456789/9793
  • Shukla, A., Sukavanam, N., & Pandey, D. N. (2014). Controllability of semilinear stochastic system with multiple delays in control. IFAC Proceedings Volumes, 47(1), 306–312. doi:10.3182/20140313-3-IN-3024.00107
  • Tajadodi, H., Khan, A., Francisco Gómez-Aguilar, J., & Khan, H. (2021). Optimal control problems with Atangana–Baleanu fractional derivative. Optimal Control Applications and Methods, 42(1), 96–109. doi:10.1002/oca.2664
  • Vijayakumar, V., Nisar, K. S., Chalishajar, D., Shukla, A., Malik, M., Alsaadi, A., & Aldosary, S. F. (2022). A note on approximate controllability of fractional semilinear integrodifferential control systems via resolvent operators. Fractal and Fractional, 6(2), 73. doi:10.3390/fractalfract6020073
  • Yang, H., Agarwal, R. P., & Liang, Y. (2016). Controllability for a class of integro-differential evolution equations involving nonlocal initial conditions. International Journal of Control, 90(12), 1–13. doi:10.1080/00207179.2016.1260161
  • Yang, X. J. (2019). General fractional derivatives: Theory, methods and applications (1st ed.). Taylor & Francis Group, Boca Raton: CRC Press.