454
Views
3
CrossRef citations to date
0
Altmetric
Original Article

An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics

, , , & ORCID Icon
Pages 535-545 | Received 05 Jun 2023, Accepted 02 Sep 2023, Published online: 09 Sep 2023

Abstract

Nonlinear partial differential equations (NLPDEs) are widely utilized in engineering and physical research to represent many physical processes of naturalistic occurrences. In this paper, we investigate two well-known NLPDEs, namely, the (2 + 1)-dimensional first integro-differential KP hierarchy equation and the (2 + 1)-dimensional second integro-differential KP hierarchy equation, through a well-stable algorithm known as the (GG+G+A)-expansion approach for the first time. This algorithm is generally based on the expansion of function method and has the advantage of easy implementation and can provide a reliable solution to any NLPDEs. Employing the algorithm, we have been able to perceive the closed form solitons of the two chosen NLPDEs that physically represent the solitary wave solutions like, singular, singular periodic, bell, and anti-bell-shaped types of solitons. Furthermore, we explore the graphical manifestations of the obtained solutions, which are of the mentioned soliton types. From the findings of our in-depth study, we can state that the acquired solutions for the selected two equations may greatly aid to extracting the associated natural phenomena in mathematical physics such as fluid dynamics and ocean engineering.

1. Introduction

The extraction and investigation of the appropriate progressive wave solutions to the NLPDEs are vital to exploring the intricate phenomena in nature. The NLPDEs are present in various physical, technological, engineering, and scientific puzzles. For instance, the fields related to physics, such as particle physics, optical physics, plasma physics, solid-state physics, mechanics, and relativity, are essentially dependent on the study of NLPDEs. The implications of NLPDEs are not only limited to the mentioned field but also have many applications in biology and the medical sciences. Because of this, to explore the mysterious incidents of nature, we need appropriate solutions and analysis for the NLPDEs. Many experts have developed numerous competent and tactual methods to detect the appropriate solutions for NLPDEs. While some researchers relied on the Riccati equation method (Malwe, Betchewe, Doka, & Kofane, Citation2016; Tverdyi & Parovik, Citation2022), others used common expansion-type methods in their work (Abdou, Citation2007; Jiang, Sheng, & Qing, Citation2005). Many researchers in (Akinyemi et al., Citation2023; Alanazi, Ouahid, Al Shahrani, Abdou, & Kumar, Citation2023; Djennadi et al., Citation2021; El-Ganaini & Kumar, Citation2023; Kumar, Hamid, & Abdou, Citation2023; Kumar, Hamid, et al., Citation2023; Kumar & Rani, Citation2021, Citation2022; Miah, Iqbal, & Osman, Citation2023; Miah, Seadawy, Ali, & Akbar, Citation2019; Miah et al., Citation2023; Niwas & Kumar, Citation2023; Oad, Arshad, Shoaib, Lu, & Li, Citation2021; Rani, Kumar, & Mann, Citation2023; Redi, Obsie, & Shiferaw, Citation2018; Redi et al., Citation2018; Seadawy, Arshad, & Lu, Citation2020; Seadawy, Iqbal, & Lu, Citation2020; Seadawy, Rizvi, Ahmad, Younis, & Baleanu, Citation2021; Seadawy & Cheemaa, Citation2020; Shehzad, Seadawy, Wang, & Arshad, Citation2023; Tala-Tebue, Seadawy, Kamdoum-Tamo, & Lu, Citation2018) implemented their techniques independently to explore the solution of NLPDEs. In addition to this, a group of researchers also implemented another expansion-type method called (GG, 1G)-expansion method to their selected NLPDEs (Ali, Miah, & Akbar, Citation2018; Inc et al., Citation2020; Li, Li, & Wang, Citation2010; Miah, Ali, Akbar, & Wazwaz, Citation2017; Qureshi et al., Citation2023; Zayed et al. Citation2014). Nowadays, an excellently workable approach named the (GG+G+A)-approach have been exercised to find the appropriate solutions to the NLPDEs, which is also an expansion of function dependent method. Very few researchers implemented (GG+G+A)-approach to solve their problems in NLPDEs (Iqbal et al., Citation2023; Khaliq et al., Citation2022; Mia, Miah, & Osman, Citation2023; Tripathy & Sahoo, Citation2021).

Very recently, Mia et al. (Citation2023), used this mention approach to investigate the (2 + 1)-dimensional KPBBM equation and ascertained appropriate solutions which are essential for. It is very difficult to solve the integro-differential type equations by the conventional and the above-cited methods. With our selected novel method, most NLPDEs, including integro-differential equations, can be handled rapidly and simply. According to our consciousness, the above-listed two equations have not been analyzed with the implementation of our selected approach. As a result, in this research work, we devoted ourselves to getting the appropriate solutions of the above quoted two integro-differential equations using the (GG+G+A)-expansion approach. This technique provides a systematic way to arrive at precise solutions and insights into the underlying dynamics of the systems, and they have been proven to be useful tools in the study of soliton equations and nonlinear mathematical physics. Insights into the behavior of nonlinear dynamics and wave propagation throughout these models can be gained from studying and comprehending soliton solutions. In domains involving nonlinear processes, mathematical physics, and information transmission, these solutions have real world applications. The study of periodic solutions, as an example of the obtained solutions, provides insight into the stability, oscillatory properties, and long-term behavior of the dynamical process. The analysis of periodic events in areas including wave propagation, oscillations, and the development of patterned structures has applications for these solutions.

This research work is placed in the following way: A necessary review and motivation of this work is given in Section 1. In Section 2, our proposed approach the (GG+G+A)-expansion approach, is discussed in detail. In Section 3, the implementation of the chosen approach for selected two integro-differential equations is given. In Section 4, the settings for the graph of the obtained results and their interpretation are discussed. Finally, this paper is concluded in part 5.

2. Execution of the (GG+G+A)-expansion approach

This section has been expanded to provide a concise description of our chosen strategy for locating the most suitable solutions to the NLPDEs. As a particular instance, we are going to utilize one of the following NLPDEs: (1) F(u,  ux,  uy, ut, uxx, uxt, uxyt)=0.(1)

Here, F is a polynomial function of u, ux, uxx,, etc. and u is the function of three independent variables, x, y, and t. Also, the terms ux, uxx,, etc. stand for partial derivative. Now, the procedures of this approach are described below:

Procedure I:

Initially, first we need to turn the attached partial differential equation into the form of an ordinary differential equation (ODE). To accomplish this, we define a new variable ψ as the linear culmination of x, y, z, t, etc.

Consequently, we can adopt the transformation principles shown below. (2) u(x, y, t)=u(ψ);ψ=x+yνt.(2)

Differentiating EquationEquation (2) as many times as needed and then putting the respective terms into EquationEquation (1) yields the ODE, (3) Z(u, (2ν)u, (1ν)u′′, ν u′′, )=0,(3) where the primes (') stands for derivative with ψ.

Procedure II:

Let the following expresion represents a compact formation of u: (4) u(ψ)=f=0Taf(GG+G+A)f.(4)

Here, G is a function of ψ associated with the given following ODE, (5) d2Gdψ2+EdGdψ+FG+AF=0,(5) where A, E, F and af (f=0, 1, 2, T) are constants to be calculated.

From EquationEquation (3), we get the value of T by applying the homogenous balance rule and then inserting the acquired number in EquationEquation (4). After placing the balance number into EquationEquation (4), we take the derivative as many times as needed then putting into EquationEquation (3), we will have a system of algebraic equations. By solving the obtained system of equations, we get the values of af (f=0, 1, 2, T) then we can find the function G(ψ) by treating the constants A,  E and F in EquationEquation (5).

Procedure III:

Lastly, from EquationEquation (3) and EquationEquation (4), we get a polynomial of (GG+G+A). By assimilating the coefficients of same indices of (GG+G+A) from left and right sides, we can consider a set of equations in terms of ν, af, A, E and F.

3. Applications of the proposed method

In this segment, our selected two integro-differential equations have been investigated by the (GG+G+A)-expansion approach. The first one is the (2 + 1)-dimensional first integro-differential (FID) KP hierarchy equation which is given below, (6) ut=12uxxy+12x2[uyyy]+2uxx1[uy]+4uuy,(6) where u=u(x,y,t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and x1=dx. This model describes the evolution of nonlinear long waves of small amplitude with slow dependence on the transverse coordinate.

The second one is the (2 + 1)-dimensional second integro-differential (SID) KP hierarchy equation, which is given below, (7) ut=116uxxxxx+56x1[uuyy]+56x1[uy2]+516x3[uyyyy]+54uxx2[uyy]+52ux1[uyy]+52uyx1[uy]+152u2ux+52uxuxx+54uuxxx+58uxyy,(7) where u=u(x,y,t) is a scalar function, x and y are respectively the longitudinal and transverse spatial coordinates, subscripts x, y, t denote partial derivatives, and x1=dx. It describes the processes of interaction of exponentially localized structures.

By envisaging the connection u(x, y, t)=Vxx(x, y, t), we convert EquationEquation (6) into the given following pattern, (8) Vxxt=12Vxxxxy+12Vyyy+2Vxxx Vxy+4VxxVxxy=0.(8)

Through the transformation V(x, y, t)=R(ψ); ψ=x+yνt, we convert EquationEquation (8) into the following ODE form, (9) (ν+12)R′′+12R(iv)+3(R′′)2+d1=0.(9)

For simplicity putting R=H in EquationEquation (9), (10) (ν+12)H+12H+3H2+d1=0,(10) where d1 is the constant of integration. Similarly, exercising the setting u(x, y, t)=Vxxx(x, y, t), we can turn EquationEquation (7) into the given following pattern, (11) Vxxxt=116Vxxxxxxxx+154VxxVxxyy+154(Vxxy)2+516Vyyyy+154VxxxVxyy+54VxxxxVyy+52VxxxyVxy+152([Vxx]2 Vxxx)x+52(VxxxVxxxx)x+54(VxxVxxxxx)x+58Vxxxxyy.(11)

Again, through the transformation V(x, y, t)=R(ψ); ψ=(x+yνt), we convert EquationEq. (11) into the following ODE form, (12) (ν+516)R+116R(iv)+154R2+52R3+58(R)2+54RR′′+58R′′+d2=0,(12) where d2 is the constant of integration.

3.1. Implementation of the (GG+G+A)-expansion method to the (2 + 1)-dimensional FID KP hierarchy equation

In EquationEquation (10), we use the homogenous balance method, and we find the balance number T=2.

Putting the value T=2 in EquationEquation (4), we get (13) H(ψ)=a0+a1(GG+G+A)+a2(GG+G+A)2.(13)

Here, the constants a0, a1, and a2 must be determined.

EquationEquations (13) and Equation(10) together with computer programs like Maple are used to create a system of equations. Consequently, the values of constants a0, a1, a2, ν and d1 are given below: a0=a0, a1=3EF+2F2+E2+2FE a2=(EF1)2, ν=1212E24F+6EF6F26a0 d1=72E2F26EF34EF2+3F4+4F3+F2+12E2a0+4Ea06EFa0+6F2a0+3a0212E3F+12E2F.

Fixing the values of the constants a0, a1 and a2 into EquationEquation (13), we get the solution of EquationEquation (10). To get the appropriate solutions of EquationEquation (6) there are two occurrences here.

Occurrence 1.

While the discriminant, D=E24F>0: (14) H(ψ)=a0+(3EF+2F2+E2+2FE)×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ](EF1)2×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ]2.(14)

Employing, ψ=x+yνt  in EquationEquation (14), we attain, (15) u(x, y, t)=a0+(3EF+2F2+E2+2FE)×[k1(E+D)+k2(ED)eD(x+yνt)k1(E+D2)+k2(ED2)eD(x+yνt)](EF1)2×[k1(E+D)+k2(ED)eD(x+yνt)k1(E+D2)+k2(ED2)eD(x+yνt)]2,(15) where ν=1212E24F+6EF6F26a0 for EquationEq. (6).

Occurrence 2.

While the discriminant, D =E24F<0: (16) H(ψ)=a0+(3EF+2F2+E2+2FE)×[(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)](EF1)2× [(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)]2.(16)

Employing ψ=x+yνt  in EquationEquation (16), we attain the respective wave solution for EquationEquation (6) as follows, (17) u(x, y, t)=a0+(3EF+2F2+E2+2FE)×[(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])](EF1)2× [(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])]2,(17) where ν=1212E24F+6EF6F26a0.

3.2. Implementation of the (GG+G+A)-expansion method to the (2 + 1)-dimensional SID KP hierarchy equation

From EquationEquation (12), we get the homogenous balance number T=2. Now, setting the value T=2 in EquationEquation (4), we get the corresponding equation in terms of R which is given bellow, (18) R(ψ)=a0+a1(GG+G+A)+a2(GG+G+A)2.(18)

Here the constants a0 and a1 have to be determined.

By combining EquationEquation (18) with EquationEquation (12), we get a system of equations. By solving this system,two sets of values of constants a0, a1, a2, ν and d2 will be obtained:

Set 1: a0=(14E23EF+2F+3F2+12), a1=3E23E9EF+6F+6F2 a2=(3E26E6EF+6F+3F2+3), ν=(732E474E2F+72F22516) d2=(164E6+764E4316E4F78E2F+34E2F2+74F2F3516).

Set 2: a0=a0, a1=(E2E3EF+2F+2F2), a2=(E22E2EF+F2+2F+1), ν=(116E454E3F+34E2F+54a0E2+58E2+354E2F210EF215a0EF152EF15EF3+10F3+5F+15a0F2+10a0F+11F2+152F4+152a02+152a0+516), d2=(58E3F418E2F258E2F+5EF2+272EF358a0E2272a0F25a0F54a02E210a02F15a02F220a0F315a0F4116a0E412E2F3+20EF4116E4F+2E3F2654E2F4+15EF5+116E4F2116E4F2+152e3F3+152a0EF+15a02EF2a0E2F+52a0E3F+20a0EF2352a0E2F2+30a0EF36F310F55F654F2394F4154a025a03).

Now, inserting the values of the constants a0, a1 and a2 from set 1 into EquationEquation (18), we shall get the solution of EquationEquation (12). Here also two occurrences will exist to get the appropriate solutions of EquationEquation (7).

Occurrence 1.

When the discriminant, D=E24F>0: (19) R(ψ)=(14E23EF+2F+3F2+12)+(3E23E9EF+6F+6F2)×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ](3E26E6EF+6F+3F2+3)×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ]2.(19)

Setting ψ=x+yνt  in EquationEquation (19), we have the following for EquationEquation (7), (20) u(x, y, t)=(14E23EF+2F+3F2+12)+(3E23E9EF+6F+6F2)×[k1(E+D)+k2(ED)eD(x+yνt)k1(E+D2)+k2(ED2)eD(x+yνt)](3E26E6EF+6F+3F2+3)×[k1(E+D)+k2(ED)eD(x+yνt)k1(E+D2)+k2(ED2)eD(x+yνt)]2,(20) where ν=(732E474E2F+72F22516).

Occurrence 2.

For the discriminant, D=E24F<0: (21) R(ψ)=(14E23EF+2F+3F2+12)+(3E23E9EF+6F+6F2)×[(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)](3E26E6EF+6F+3F2+3)×[(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)]2.(21)

Installing ψ=x+yνt  in EquationEquation (21), we get the following result for EquationEquation (7), (22) u(x, y, t)=(14E23EF+2F+3F2+12)+(3E23E9EF+6F+6F2)×[(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])](3E26E6EF+ 6F+3F2+3) [(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])]2,(22) where ν=(732E474E2F+72F22516).

Again, inserting the values of the constants a0, a1 and a2 from set 2 into EquationEquation (18), we have the solution of EquationEquation (12). Here also two occurrences will exist to get the appropriate solutions of EquationEquation (7).

Occurrence 1.

Again for the discriminant, D=E24F>0: (23) R(ψ)=a0+(E2E3EF+2F+2F2)×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ](E22E2EF+F2+2F+1)×[k1(E+D)+k2(ED)eDψk1(E+D2)+k2(ED2)eDψ]2.(23)

Putting ψ=x+yνt  in EquationEquation (23), we will have the following result for EquationEquation (7), (24) u(x, y, t)=a0+(E2E3EF+2F+2F2)×[k1(E+D)+k2(ED)eD(x+yνt) k1(E+D2)+k2(ED2)eD(x+yνt) ]- (E22E2EF+F2+2F+1)×[k1(E+D)+k2(ED)eD(x+yνt) k1(E+D2)+k2(ED2)eD(x+yνt) ]2,(24) where ν=(116E454E3F+34E2F+54a0E2+58E2+354E2F210EF215a0EF152EF15EF3+10F3+5F+15a0F2+10a0F+11F2+152F4+152a02+152a0+516).

Occurrence 2.

If, (D)=E24F<0, (25) R(ψ)=a0+(E2E3EF+2F+2F2)×[(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)](E22E2EF+F2+2F+1)× [(Ek2+k1D)sin(D2ψ)+(Ek1k2D)cos(D2ψ)((E2)k2+k1D)sin(D2ψ)+((E2)k1k2D)cos(D2ψ)]2.(25)

Installing ψ=x+yνt  in EquationEquation (25), we find the following result for EquationEquation (7), (26) u(x, y, t)=a0+(E2E3EF+2F+2F2)×[(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])](E22E2EF+F2+2F+1)×[(Ek2+k1D)sin(D2[x+yνt])+(Ek1k2D)cos(D2[x+yνt])((E2)k2+k1D)sin(D2[x+yνt])+((E2)k1k2D)cos(D2[x+yνt])]2,(26) where ν=(116E454E3F+34E2F+54a0E2+58E2+354E2F210EF215a0EF152EF15EF3+10F3+5F+15a0F2+10a0F+11F2+152F4+152a02+152a0+516).

4. Graphical representation and discussion

The physical embellishment of the obtained results to the integro-differential equations is shown here in 3D, contour, and 2D formats. The 3D graphs are of singular, singular periodic, bell and anti-bell-shaped types of solitons. First of all, we diagrammatize the solution of EquationEquation (15) in three orientations, one is 3D (bell shape soliton) within the scale x[10, 10] and t[10, 10] E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=12.84 and y=2, contour figure for the same interval and the same parametric values, 2D figure for the scale x[40, 40] for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=12.84, y=2 and t=1, which are given in , and , respectively. Again, we diagrammatize the solution of EquationEquation (17) in three orientations, one is 3D (periodic soliton) within the scale x[10, 10] and t[10, 10] for the values E=1, F=2, k1=1, k2=2, D=7, a0=2,  ν=33 and y=2, contour figure for the same interval and the same parametric values, 2D figure for the scale x[10, 10] for the values E=1, F=2, k1=1, k2=2, D=7, a0=2, ν=33, y=2 and t=2, which are given in , and , respectively. Now, we diagrammatize the solution of EquationEquation (20) in three orientations, one is 3D (bell shape soliton) within the scale x[10, 10] and t[10, 10] for the values E=1, F=0.2, k1=1 and k2=1, ν=1.55375, D=0.2 and y=1, contour figure for same interval and same parametric values, 2D figure for the scale x[20, 20] for the values E=1, F=0.2, k1=1, k2=1, D=0.2, ν=1.55375,  y=1 and t=1, which are given in , and , respectively. Again, we diagrammatize the solution of EquationEquation (22) in three orientations, one is 3D (singular periodic soliton) within the scale x[10, 10] and t[10, 10] for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=0.2  and y=1, contour figure for same interval and same parametric values, 2D figure for the scale x[10, 10] for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=0.2, y=1 and t=1, which are given in , and , respectively. Now, we diagrammatize the solution of EquationEquation (24) in three orientations, one is 3D (anti-bell shape soliton) within the scale x[5, 5] and t[5, 5] for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=2.732, D=0.2  and y=1, contour figure for same interval and same parametric values, 2D figure for the scale x[20, 20] for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=2.732, D=0.2, y=1 and t=1, which are given in , and , respectively.

Figure 1. (a). the 3D singular bell shape soliton in EquationEquation (15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=12.84 and y=2 for the range x[10, 10] and t[10, 10]. (b). The contour figure in EquationEq. (15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=12.84 and y=2 for the range x[10, 10] and t[10, 10]. (c). The 2D shape in EquationEq. (15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=12.84, y=2 and t=1 for the range x[40, 40]

Figure 1. (a). the 3D singular bell shape soliton in EquationEquation (15)(15) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(E−F−1)2×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=−12.84 and y=2 for the range x∈[−10, 10] and t∈[−10, 10]. (b). The contour figure in EquationEq. (15)(15) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(E−F−1)2×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=−12.84 and y=2 for the range x∈[−10, 10] and t∈[−10, 10]. (c). The 2D shape in EquationEq. (15)(15) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(E−F−1)2×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(15) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, a0=2, ν=−12.84, y=2 and t=1 for the range x∈[−40, 40]

Figure 2. (a). the 3D periodic soliton in EquationEquation (17) for the values E=1, F=2, k1=1, k2=2, D=7, a0=2, ν=33 and y=2 for the range x[10, 10] and t[10, 10]. (b). The contour shape in EquationEq. (17) for the values E=1, F=2, k1=1, k2=2, D=7, a0=2,  ν=33 and y=2 for the range x[10, 10] and t[10, 10]. (c). The 2D shape in EquationEq. (17) for the values E=1, F=2, k1=1, k2=2, D=7, a0=2, ν=33, y=2 and t=2 for the range x[10, 10].

Figure 2. (a). the 3D periodic soliton in EquationEquation (17)(17) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(E−F−1)2× [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(17) for the values E=1, F=2, k1=1, k2=2, D=−7, a0=2, ν=−33 and y=2 for the range x∈[−10, 10] and t∈[−10, 10]. (b). The contour shape in EquationEq. (17)(17) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(E−F−1)2× [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(17) for the values E=1, F=2, k1=1, k2=2, D=−7, a0=2,  ν=−33 and y=2 for the range x∈[−10, 10] and t∈[−10, 10]. (c). The 2D shape in EquationEq. (17)(17) u(x, y, t)=a0+(−3EF+2F2+E2+2F−E)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(E−F−1)2× [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(17) for the values E=1, F=2, k1=1, k2=2, D=−7, a0=2, ν=−33, y=2 and t=2 for the range x∈[−10, 10].

Figure 3. (a). the 3D bell-shape soliton in EquationEquation (20) for the values E=1, F=0.2, k1=1 and k2=1, ν=1.55375, D=0.2  and y=1 for the range x[10, 10] and t[10, 10]. (b). The contour in EquationEq. (20) for the values E=1, F=0.2, k1=1 and k2=1, ν=1.55375, D=0.2  and y=1 for the range x[10, 10] and t[10, 10]. (c). The 2D shape in EquationEq. (20) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, ν=1.55375,  y=1 and t=1 for the range x[20, 20].

Figure 3. (a). the 3D bell-shape soliton in EquationEquation (20)(20) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(3E2−6E−6EF+6F+3F2+3)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(20) for the values E=1, F=0.2, k1=1 and k2=1, ν=1.55375, D=0.2  and y=1 for the range x∈[−10, 10] and t∈[−10, 10]. (b). The contour in EquationEq. (20)(20) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(3E2−6E−6EF+6F+3F2+3)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(20) for the values E=1, F=0.2, k1=1 and k2=1, ν=1.55375, D=0.2  and y=1 for the range x∈[−10, 10] and t∈[−10, 10]. (c). The 2D shape in EquationEq. (20)(20) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]−(3E2−6E−6EF+6F+3F2+3)×[k1(E+D)+k2(E−D)eD(x+y−νt)k1(E+D−2)+k2(E−D−2)eD(x+y−νt)]2,(20) for the values E=1, F=0.2, k1=1, k2=1, D=0.2, ν=1.55375,  y=1 and t=1 for the range x∈[−20, 20].

Figure 4. (a). the 3D singular periodic soliton in EquationEquation (22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=0.2  and y= 1 for the range x[10, 10] and t[10, 10]. (b). the contour shape in EquationEquation (22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=0.2  and y=1 for the range x[10, 10] and t[10, 10]. (c). The 2D shape in EquationEq. (22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=0.2, y=1 and t=1 for the range x[10, 10].

Figure 4. (a). the 3D singular periodic soliton in EquationEquation (22)(22) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(3E2−6E−6EF+ 6F+3F2+3) [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=−0.2  and y= 1 for the range x∈[−10, 10] and t∈[−10, 10]. (b). the contour shape in EquationEquation (22)(22) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(3E2−6E−6EF+ 6F+3F2+3) [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=−0.2  and y=1 for the range x∈[−10, 10] and t∈[−10, 10]. (c). The 2D shape in EquationEq. (22)(22) u(x, y, t)=−(14E2−3EF+2F+3F2+12)+(3E2−3E−9EF+6F+6F2)×[(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]−(3E2−6E−6EF+ 6F+3F2+3) [(Ek2+k1−D) sin (−D2[x+y−νt])+(Ek1−k2−D) cos (−D2[x+y−νt])((E−2)k2+k1−D) sin (−D2[x+y−νt])+((E−2)k1−k2−D) cos (−D2[x+y−νt])]2,(22) for the values E=1, F=0.3, k1=1 and k2=2, ν=1.55375, D=−0.2, y=1 and t=1 for the range x∈[−10, 10].

Figure 5. (a). The 3D anti-bell shape soliton in EquationEq. (24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=2.732, D=0.2  and y=1 for the range x[5, 5] and t[5, 5]. (b). The contour shape in EquationEq. (24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=2.732, D=0.2  and y=1 for the range x[5, 5] and t[5, 5]. (c). The 2D shape of EquationEq. (24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=2.732, D=0.2, y=1and t=1 for the range x[20, 20].

Figure 5. (a). The 3D anti-bell shape soliton in EquationEq. (24)(24) u(x, y, t)=a0+(E2−E−3EF+2F+2F2)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]- (E2−2E−2EF+F2+2F+1)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]2,(24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=−2.732, D=0.2  and y=1 for the range x∈[−5, 5] and t∈[−5, 5]. (b). The contour shape in EquationEq. (24)(24) u(x, y, t)=a0+(E2−E−3EF+2F+2F2)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]- (E2−2E−2EF+F2+2F+1)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]2,(24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=−2.732, D=0.2  and y=1 for the range x∈[−5, 5] and t∈[−5, 5]. (c). The 2D shape of EquationEq. (24)(24) u(x, y, t)=a0+(E2−E−3EF+2F+2F2)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]- (E2−2E−2EF+F2+2F+1)×[k1(E+D)+k2(E−D)eD(x+y−νt) k1(E+D−2)+k2(E−D−2)eD(x+y−νt) ]2,(24) for the values E=1, F=0.2, k1=1 and k2=1, a0=0.2, ν=−2.732, D=0.2, y=1and t=1 for the range x∈[−20, 20].

It is important to mention that when the solitary wave’s center is imaginary, we note that singular solitons may be connected to them. As a result, discussing solitary solitons is important. Spikes are present in this form of solution, which may suggest a description for the emergence of rogue waves.

5. Conclusion

We have found many progressive wave soliton solutions of the two integral-differential KP hierarchy equations in the present study by using the (GG+G+A)-expansion approach. The results of our research indicate that the solutions that were discovered physically imply solitary wave solutions. These solitary wave solutions incorporate like singular, singular periodic, bell and anti-bell-shaped types of solitons. When tackling the natural model equations that may be utilized to solve the PDE, particularly the nonlinear evolution equations, the (GG+G+A)-expansion approach that we have provided is easy to understand, practically applicable, and satisfying in its results. This approach enables us to quickly find the formative solutions of our proposed equation, which may be used to explain unforeseen occurrences, notably in the branches of modern engineering and mathematical physics. These results have implications for the knowledge of nonlinear PDEs and their applications in physics, engineering, optics, and mathematics. The study provides insights into the dynamics of the two integro-differential KP hierarchy equations and demonstrates the efficiency of mathematical modeling techniques. Overall, this research enhances the field of nonlinear dynamics and provides avenues for further investigation of similar models and phenomena.

Disclosure statement

No potential conflict of interest was reported by the author(s)

References

  • Abdou, M. A. (2007). The extended F-expansion method and its applications for a class of nonlinear evolution equations. Chaos Solitons and Fractals, 31(1), 95–104. doi:10.1016/j.chaos.2005.09.030
  • Ahmad, H., Seadawy, A. R., & Khan, T. A. (2020). Numerical solution of Korteweg–de Vries-Burgers equation by the modified variational iteration algorithm-II arising in shallow water waves. Physica Scripta, 95(4), 045210. doi:10.1088/1402-4896/ab6070
  • Akinyemi, L., Houwe, A., Abbagari, S., Wazwaz, A. M., Alshehri, H. M., & Osman, M. S. (2023). Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik, 288, 171202. doi:10.1016/j.ijleo.2023.171202
  • Alanazi, M. M., Ouahid, L., Al Shahrani, J. S., Abdou, M. A., & Kumar, S. (2023). Novel soliton solutions to the Atangana Baleanu (AB) fractional for ion sound and Langmuir waves (ISALWs) equations. Optical and Quantum Electronics, 55(5), 462. doi:10.1007/s11082-023-04736-6
  • Ali, H. M. S., Miah, M. M., & Akbar, M. A. (2018). Study of abundant explicit wave solutions of the Drinfeld-Sokolov-Satsuma-Hirota (DSSH) equation and the shallow water wave equation. Propulsion and Power Research, 7(4), 320–328. doi:10.1016/j.jppr.2018.11.007
  • Djennadi, S., Shawagfeh, N., Inc, M., Osman, M. S., Gómez-Aguilar, J. F., & Abu Arqub, O. (2021). The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Physica Scripta, 96(9), 094006. doi:10.1088/1402-4896/ac0867
  • El-Ganaini, S., & Kumar, S. (2023). Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new improved modified generalized sub-ODE proposed method. Mathematics and Computers in Simulation, 208, 28–56. doi:10.1016/j.matcom.2023.01.013
  • Hong, B., Chen, W., Zhang, S., & Xub, J. (2019). The (G′G′+G+A)-expansion method for two types of nonlinear schr o¨ dinger equations. Journal of Mathematical Physics, 31, 5, 1155–1156.
  • Inc, M., Miah, M., Akher, C., Ali, S., Rezazadeh, H., Ali Akinlar, M., & Chu, Y.-M. (2020). New exact solutions for Kaup-Kupershmidt equation. AIMS Mathematics, 5(6), 6726–6738. doi:10.3934/math.2020432
  • Iqbal, M. A., Baleanu, D., Miah, M. M., Ali, H. S., Alshehri, H. M., & Osman, M. S. (2023). “New soliton solutions of the mZK equation and Gerdjikov-Ivanov equation by employing the double (G′G, 1G)-expansion method. Results in Physics, 47, 106391. doi:10.1016/j.rinp.2023.106391
  • Iqbal, M. A., Wang, Y., Miah, M. M., & Osman, M. S. (2021). Study on Date-Jimbo- Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal and Fractional, 6(1), 4. doi:10.3390/fractalfract6010004
  • Jiang, C., Sheng, H. H., & Qing, Y. K. (2005). A generalized F-expansion method and its applications in high-dimensional nonlinear evolution equation. Communications in Theoretical Physics, 44(2), 307–310. doi:10.1088/6102/44/2/307
  • Khaliq, S., Ullah, A., Ahmad, S., Akgül, A., Yusuf, A., & Sulaiman, T. A. (2022). Some novel analytical solutions of a new extended (2 + 1)-dimensional Boussinesq equation using a novel method. Journal of Ocean Engineering and Science, 4, 10 doi:10.1016/j.joes.2022.04.010
  • Kumar, S., & Rani, S. (2021). Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2 + 1)-dimensional dissipative long wave system. Physica Scripta, 96(12), 125202. doi:10.1088/1402-4896/ac1990
  • Kumar, S., & Rani, S. (2022). Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq–Burgers system in ocean waves. Physics of Fluids, 34(3), 037109. doi:10.1063/5.0085927
  • Kumar, S., Hamid, I., & Abdou, M. A. (2023). Some specific optical wave solutions and combined other solitons to the advanced (3 + 1)-dimensional Schrödinger equation in nonlinear optical fibers. Optical and Quantum Electronics, 55(8), 728. doi:10.1007/s11082-023-04976-6
  • Kumar, S., Mann, N., Kharbanda, H., & Inc, M. (2023). Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2 + 1)-dimensional Konopelchenko–Dubrovsky (KD) system. Analysis and Mathematical Physics, 13(3), 40. doi:10.1007/s13324-023-00802-0
  • Li, L., Li, E., & Wang, M. (2010). “The (G′G, 1G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Applied Mathematics-A Journal of Chinese Universities, 25(4), 454–462. doi:10.1007/s11766-010-2128-x
  • Malwe, B. H., Betchewe, G., Doka, S. Y., & Kofane, T. C. (2016). Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dynamics, 84(1), 171–177. doi:10.1007/s11071-015-2318-4
  • Mia, R., Miah, M. M., & Osman, M. S. (2023). A new implementation for finding of analytical solutions in nonlinear PDEs. Heliyon, 9(5), e15690. doi:10.1016/j.heliyon.2023.e15690
  • Miah, M. M. (2022). The fifth order Caudrey-Dodd-Gibbon equation for exact travelling wave solutions using the (G′G, 1G)-expansion method. Springer proceedings in complexity, Nonlinear Dynamics and Applications, Proceedings of the ICNDA 2022, p 1087–1096.
  • Miah, M. M., Ali, H. M. S., Akbar, M. A., & Wazwaz, A. M. (2017). “Some applications of the (G′G, 1G)-expansion method to find new exact solutions of NLEEs”. The European Physical Journal plus, 132, 252.
  • Miah, M. M., Iqbal, M. A., & Osman, M. S. (2023). A Study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions. Communications in Theoretical Physics, 75(8), 085008. doi:10.1088/1572-9494/ace155
  • Miah, M. M., Seadawy, A. R., Ali, H. M. S., & Akbar, M. A. (2019). “The further investigations to extract abundant new exact traveling wave solutions of some NLEEs by employing the generalized (G′G)-expansion method. Journal of Ocean Engineering and Science, 4(4), 387–394. doi:10.1016/j.joes.2019.06.004
  • Niwas, M., & Kumar, S. (2023). New plenteous soliton solutions and other form solutions for a generalized dispersive long-wave system employing two methodological approaches. Optical and Quantum Electronics, 55(7), 630. doi:10.1007/s11082-023-04847-0
  • Oad, A., Arshad, M., Shoaib, M., Lu, D., & Li, X. (2021). Novel soliton solutions of two-mode sawada-kotera equation and its applications. IEEE Access. 9, 127368–127381. doi:10.1109/ACCESS.2021.3111704
  • Qureshi, S., Akanbi, M. A., Shaikh, A. A., Wusu, A. S., Ogunlaran, O. M., Mahmoud, W., & Osman, M. S. (2023). A new adaptive nonlinear numerical method for singular and stiff differential problems. Alexandria Engineering Journal, 74, 585–597. doi:10.1016/j.aej.2023.05.055
  • Rani, S., Kumar, S., & Mann, N. (2023). On the dynamics of optical soliton solutions, modulation stability, and various wave structures of a (2 + 1)-dimensional complex modified Korteweg-de-Vries equation using two integration mathematical methods. Optical and Quantum Electronics, 55(8), 731. doi:10.1007/s11082-023-04946-y
  • Redi, R. T., Obsie, Y., & Shiferaw, A. (2018). “The improved (G′G)-Eexpansion method to the generalized Burgers-Fisher equation”. Mathematical Modelling and Applications, 3, 16–30.
  • Seadawy, A. R., & Cheemaa, N. (2020). Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics. Indian Journal of Physics, 94(1), 117–126. doi:10.1007/s12648-019-01442-6
  • Seadawy, A. R., Arshad, M., & Lu, D. (2020). The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows. Chaos, Solitons & Fractals, 139, 110141. doi:10.1016/j.chaos.2020.110141
  • Seadawy, A. R., Iqbal, M., & Lu, D. (2020). Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma. Physica A: Statistical Mechanics and Its Applications, 544, 123560. doi:10.1016/j.physa.2019.123560
  • Seadawy, A. R., Rizvi, S. T. R., Ahmad, S., Younis, M., & Baleanu, D. (2021). Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation. Open Physics, 19(1), 1–10. doi:10.1515/phys-2020-0224
  • Shehzad, K., Seadawy, A. R., Wang, J., & Arshad, M. (2023). Multi peak solitons and btreather types wave solutions of unstable NLSEs with stability and applications in optics. Optical and Quantum Electronics, 55(1), 7. doi:10.1007/s11082-022-04252-z
  • Tala-Tebue, E., Seadawy, A. R., Kamdoum-Tamo, P. H., & Lu, D. (2018). Dispersive optical soliton solutions of the higher-order nonlinear Schrödinger dynamical equation via two different methods and its applications. The European Physical Journal plus, 133(7), 1–10. doi:10.1140/epjp/i2018-12133-8
  • Tripathy, A., & Sahoo, S. (2021). A novel analytical method for solving (2 + 1)- dimensional extended Calogero-Bogoyavlenskii-Schiff equation in plasma physics. Journal of Ocean Engineering and Science, 6(4), 405–409. doi:10.1016/j.joes.2021.04.003
  • Tverdyi, D., & Parovik, R. (2022). Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect. Fractal and Fractional, 6(3), 163. doi:10.3390/fractalfract6030163
  • Zayed, E. M. E., & Alurrfi, K. A. E. (2014). “The (G′G, 1G)-expansion method and its applications for solving two higher order nonlinear evolution equations. Mathematical Problems in Engineering, 2014, 1–20. doi:10.1155/2014/746538