363
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Saigo fractional q-integral involving the generalized q-hypergeometric series and a general class of q-polynomials

ORCID Icon & ORCID Icon
Pages 691-701 | Received 27 May 2023, Accepted 04 Nov 2023, Published online: 15 Nov 2023

Abstract

The fractional q-calculus has attracted the interest of a large number of academics over the last four decades or so, due mainly to a wide range of applications that cover natural sciences to social sciences. Many fractional q-calculus operators, particularly those involving various q-special functions, have been deeply studied and widely applied. In this paper, we aim to establish certain image formulas of Saigo fractional q-integral operators involving the product of generalized q-hypergeometric series and a general class of q-polynomials that are primarily expressed in terms of generalized q-hypergeometric series in a systematic manner. We demonstrate their use by studying q-Konhouser biorthogonal polynomials and q-Jacobi polynomials. Additionally, some fascinating special cases of our main findings are taken into consideration, and pertinent connections between some of the findings presented here and those from earlier studies are also made.

2010Mathematics Subject Classification:

1. Introduction and preliminaries

Fractional calculus, also known as calculus of variations, deals with the generalization of traditional calculus operations to non-integer orders of differentiation and integration. Instead of just dealing with integer orders like 1, 2, 3, and so on, fractional calculus allows operations like differentiating and integrating functions by non-integer amounts, such as 0.5, −1.5, and so forth. This concept is useful in modeling various physical and engineering phenomena with memory effects, such as diffusion, viscoelasticity, and more.

Fractal calculus is a mathematical framework that extends traditional calculus to deal with functions defined on fractals, which are complex geometric objects with self-similar patterns at different scales. Fractals often have non-integer dimensions, and fractal calculus aims to provide tools for analyzing and differentiating functions that exhibit fractal-like behavior. Fractal calculus and its geometry explanation (He, Citation2018) have been becoming hot topics in both mathematics and engineering for non differential solutions. Fractal theory is the theoretical basis for the fractal spacetime (He, Citation2014), and analysis MEMS in the fractal space and established the corresponding fractal model (Tian et al., Citation2021) as well. Many researchers have already found the intrinsic relationship between the fractional dimensions and the fractional order (Wu and Liang, Citation2017). This paper will focus itself on the fractal calculus, a relatively new branch of mathematics with easy understanding and ready applications in the field of fractal solitary waves (Wang, Citation2022). The two-scale fractal calculus is used to describe transport problems in a porous medium, such as the problem of oil extraction and heat transfer of heat pipes. The porous medium is viewed as a fractal space, so non-linear vibrations in the porous medium can be modeled by fractal vibration theory (He et al., Citation2021).

q-Calculus, also known as quantum calculus or Jackson’s calculus, is a generalization of traditional calculus that involves a parameter q. This parameter q is a complex number or a formal variable, and when q approaches 1, q-calculus converges to ordinary calculus. q-Calculus extends differentiation and integration operations by introducing q-derivatives and q-integrals, which satisfy different rules compared to traditional calculus. It has applications in physics, particularly in quantum mechanics, statistical mechanics, and combinatorics.

Fractal calculus focuses on functions defined on fractals, whereas fractional calculus deals with generalizing calculus to non-integer orders, and q-calculus involves a parameter q that leads to specialized rules for differentiation and integration. The computation of fractional q-derivatives (and fractional q-integrals) of special functions of one or more variables is significant because these results can be used to evaluate q-integrals and solve q-integral and q-differential equations. The theory of fractional q-calculus and q-hypergeometric functions of one and more variables has several applications in applied mathematics, Engineering and Physical Sciences, such as Lie theory, Number theory, Computational complexity, Partition theory, Quantum field theory, and so on. Due to their use in domains including combinatorics, orthogonal polynomials, calculus of variations, basic hypergeometric functions, the theory of relativity and mechanics, quantum difference operators are significant in mathematics (Gasper and Rahman, Citation1990). Numerous basic quantum calculus ideas are covered in the book by Kac and Cheung (Citation2002). Researchers have recently paid a lot of attention to q-calculus, and (Annaby and Mansour, Citation2012; Cao et al., Citation2023; Rajković et al., Citation2007; Zhou et al., Citation2022) and other references cited therein contain a number of new findings.

The fractional calculus has been acknowledged as a tool for the explanation of several phenomena in kinematics, biology, chemistry, finance, etc. throughout the previous two centuries. Moreover, q-calculus was confirmed as a method for handling discrete variations of continuous scientific problems (see (Kac and Cheung, Citation2002) for more information). It was only a matter of time before those ideas came together.

Inspired by these possibilities, a number of researchers have used fractional q-calculus operators in the theory of special functions of one or more variables. Recently, Kumar et al. (Citation2023) and Kumar et al. (Citation2022) determined several fractional q-integral formulas for the q-analogues of I-function and Aleph function of one and two variables. Vyas et al. (Citation2019), Vyas et al. (Citation2020) and Vyas et al. (Citation2021) analyzed the q-analogues of the numerous special functions and subsequent implementation. It has been derived for basic q-generating series, q-trigonometric functions and q-exponential function by Al-Omari et al. (Citation2021) utilized for different forms of q-Bessel functions and some power series of special type. Purohit et al. (Citation2021), Purohit et al. (Citation2021) and Purohit et al. (Citation2023) derived the unified class of spiral-like functions, analytic function including different type of fractional operators in quantum calculus. Here, all definitions and notations are taken from Gasper and Rahman’s book (Gasper and Rahman, Citation1990).

In the theory of q-series, the q-shifted factorial is defined as follows for a real or complex a and |q| < 1: (1.1) (γ;q)0=1; q1, (γ;q)n=k=0n1(1γqk), (nN).(1.1)

(γ;q) then as the infinite product diverges when γ0 and |q|1, thus we will assume that |q|1 anytime (γ;q) appears in a formula. Moreover, we have the following for any complex number a: (1.2) (γ;q)a=(γ;q)(γqa;q),aC, 0<|q|<1.(1.2) where qa’s principal value is obtained. The definition of the power function (zγ)ϑ, q-analogues is (1.3) (zγ)qγ=zϑ(γ/z;q)ϑ=zϑj=0[1(γ/z)qj1(γ/z)qj+ϑ]=zϑ(γ/z;q)(qϑγ/z;q),0<|q|<1, (z0).(1.3)

The mathematical description of the q-gamma function is (1.4) Γq(z)=(q;q)(qz;q)(1q)1z=(q;q)z1(1q)z1,(z0,1,2,).,(1.4)

The q-derivative of an analytic function f(z) is defined as follows. (1.5) (Dqf)(z)=f(z)f(qz)(1q)z,(z0,q1),(1.5) and limq1Dqf(z)=df(z)dz.

We have (1.6) Dqn(zμ)=Γq(μ+1)Γq(μn+1)  zμn,(R(μ)+1>0).(1.6)

The q-integrals of a function f(z) are defined as follows. (1.7) 0af(z)dqz=a(1q)m=0qmf(aqm),(1.7) and (1.8) af(z)dqz=a(1q)m=1qmf(aqm).(1.8)

The generalized q-hypergeometric series is given by (1.9) rφs[a1,,arb1,,bs;q,z]=m=0(a1,,ar;q)m(b1,,bs;q)nzn(q;q)m{(1)mq(m(m1)/2)}(1+sr),(1.9) with (a1,,ar;q)m=(a1;q)m(ar;q)m. If 0<|q|<1, the series (1.9) converses for all |z|<1 if r=s+1, and for any z if rs. Also if |q|>1, the series converses absolutely |z|<|(b1bsq)/(a1ar)|.

The family of basic (or q-) polynomials fn,N(z;q) (cf. Srivastava and Agarwal (Citation1989)) is described in terms of a bounded complex sequence {Sn,q}n=0 as (1.10) fn,N(z;q)=j=0[n/N][nNj]qSn,qzj,(n=0,1,2,),(1.10) where N is a positive integer. The q-polynomials family fn,N(z;q) yields a number of well-known q-polynomials as its special cases by appropriately specializing the coefficient Sn,q. The q-Laguerre polynomials, q-Hermite polynomials, q-Jacobi polynomials, q-Konhauser polynomials, q-Wall polynomials, and several others are among these.

The definition of Saigo’s fractional q-integral operators has recently been provided by Purohit and Yadav (Citation2010), with the restriction that one of the parameters,ε, must be a non-negative integer. Under that limitation, it was impossible to provide a definition of fractional derivatives. Garg and Chanchlani (Citation2011) provide the definitions of the Saigo’s fractional q-integral operator as follows to get over these issues. For ϑC, R(ϑ)>0, ζ and ε being real or complex, the generalized fractional q-integral operators Iqϑ,ζ,ε(.) and Jqϑ,ζ,ε(.) defined in the following manner: (1.11) Iqϑ,ζ,εf(z)=zζ1Γq(ϑ)0z(tq/z;q)ϑ1×n=0(qϑ+ζ;q)n(qε;q)n(qϑ;q)n(q;q)n(1)nq(εζ)nq(n2)(tz1)qnf(t)dqt,(1.11) and (1.12) Jqϑ,ζ,εf(z)=qϑ(ϑ+1)/2ζΓq(ϑ)z(z/t;q)ϑ1 tζ1 ×n=0(qϑ+ζ;q)n(qε;q)n(qϑ;q)n(q;q)n(1)nq(εζ)nq(n2)(zqt1)qnf(tq1ϑ)dqt,(1.12) where 0<|q|<1, a real valued function f(z) on (0,).

Definitions given by (Equation1.11) and (Equation1.12), in view of (Equation1.7) and (Equation1.8) can be written as (1.13) Iqϑ,ζ,εf(z)=zζ(1q)ϑ ×n=0(qϑ+ζ;q)n(qε;q)n(q;q)nq(εζ+1)nk=0qk(qϑ+n;q)k(q;q)kf(z qk+n),(1.13) and (1.14) Jqϑ,ζ,εf(z)=zζqϑ(ϑ+1)/2(1q)ϑ ×n=0(qϑ+ζ;q)n(qε;q)n(q;q)n qεnk=0qζk(qϑ+n;q)k(q;q)kf(z qϑkn).(1.14)

For 0<|q|<1; R(ϑ)>0, ζ and ε being real or complex. Images of the power function under fractional q-integrals Iqϑ,ζ,ε and Jqϑ,ζ,ε are given by (1.15) Iqϑ,ζ,ε(zμ)=Γq(μ+1)Γq(μζ+ε+1)Γq(μζ+1)Γq(μ+ϑ+ε+1)zμζ,(1.15) provided R(μ+1)>0 and R(μζ+ε+1)>0.

and (1.16) Jqϑ,ζ,ε(zμ)=Γq(ζμ)Γq(εμ)Γq(μ)Γq(ζ+ϑμ+ε)zμζqϑμϑ(ϑ+1)/2,(1.16) provided R(ζμ)>0 and R(εμ)>0.

To our opinion, there is far too little literature on fractional q-integrability, q-differentiability. As a result of the foregoing research, the goal of this study is to obtain the Saigo fractional q-calculus formula pertaining to product of the generalized q-hypergeometric series and a the general class of basic (or q-) polynomials (GCq-P). The name general class of basic polynomials, itself indicates the importance of the results, because we can derive a number of fractional q-calculus formulae for various classical orthogonal q-polynomials.

2. Fractional q-calculus approach

2.1. Left-sided fractional q-integration of the product of q-polynomial and generalized q-hypergeometric series

In this section, we consider Saigo fractional q-integral operators (Equation1.11) involving the product of the GCq-P (Equation1.10) and the generalized q-hypergeometric function (Equation1.9) as the kernels and derive the following theorem:

Theorem 1.

Let ϑ,ζ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(δ+j+1)>0 and R(δ+jζ+ε+1)>0, then the Saigo fractional q-integral Iqϑ,ζ,ε of the product of a GCq-P fn,N(.) and the generalized q-hypergeometric function rφs(.) is given by (2.1) Iqϑ,ζ,ε{zδfn,N(z;q)  rφs[a1,,arb1,,bs;q,ρz]}=zδζ  j=0[n/N][nNj]qSn,q Γq(δ+j+1)Γq(δ+jζ+ε+1)Γq(δ+jζ+1)Γq(δ+j+ϑ+ε+1)zj× r+2φs+2[a1,,ar,  qδ+j+1,  qδ+jζ+ε+1b1,,bs,  qδ+jζ+1,  qδ+j+ϑ+ε+1; q, ρz].(2.1)

Proof.

We continue to prove (Equation2.1) by first presenting a GCq-P occurring on its left-hand side as a series given by (Equation1.10), then replacing the generalized q-hypergeomtric series with the help of (Equation1.9), interchanging the order of Saigo fractional q-integral and summation, we get the subsequent form (say I1): (2.2) I1=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)m(b1,b2,,bs;q)mρm[(1)mqm(m1)/2]1+sr× Iqϑ,ζ,ε{zδ+j+m(q;q)m}.(2.2)

Now, using the image formula (Equation1.15), which is true under the circumstances specified in Theorem 1, we get (2.3) I1=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)mρm(b1,b2,,bs;q)m[(1)mqm(m1)/2]1+sr×Γq(δ+j+m+1)Γq(δ+j+mζ+ε+1)Γq(δ+j+mζ+1)Γq(δ+j+m+ϑ+ε+1)zδ+j+mζ.(2.3)

Using the EquationEq. (1.4) and simplifying, we obtain (2.4) I1=zδζj=0[n/N][nNj]qSn,qΓq(δ+j+1)Γq(δ+jζ+ε+1)Γq(δ+jζ+1)Γq(δ+j+ϑ+ε+1)zj×m=0(a1,a2,,ar;q)m(b1,b2,,bs;q)m[(1)mqm(m1)/2]1+sr(qδ+j+1,q)m(qδ+jζ+ε+1,q)m(qδ+jζ+1;q)m(qδ+j+ϑ+ε+1;q)m(ρz)m.(2.4)

Upon substituting the right-hand side of EquationEq. (4.6), in view of using definition (Equation1.9), we arrive at the result (Equation2.1).□

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Theorems 1, we get the known result presented by Garg and Chanchlani (Citation2011), page 147, EquationEq. (3.1).

We now show several special cases of Theorem 1 as follows:

If we set ζ = 0, define operator in EquationEq. (1.11), and using the following identity (2.5) Iqϑ,0,εf(z)=Iqε,ϑf(z),(2.5) where the Iqε,ϑ(.) is the Kober fractional q-integral operator, appears in the right-hand side of (Equation2.5) due to (Agarwal, Citation1969) defined as: (2.6) Iqε,ϑ{f(z)}=zεϑΓq(ϑ)0z(ztq)μ1tεf(t)dq(t),(R(μ)>0;|q|<1,εR).(2.6)

Corollary 2.

Let ϑ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(δ+j+ε+1)>0, then the Kober fractional q-integral Iqε,ϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric function rφs(.) is given by (2.7) Iqε,ϑ{zδfn,N(z;q)  rφs[a1,,arb1,,bs;q,ρz]}=zδ j=0[n/N][nNj]qSn,q ×Γq(δ+j+ε+1)  zjΓq(δ+j+ϑ+ε+1) r+1φs+1[a1,,ar,  qδ+j+ε+1b1,,bs,  qδ+j+ϑ+ε+1; q, ρz].(2.7)

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Corollary 2, we get the result given by Yadav and Purohit (Citation2006), p. 441, Eq. (25).

If we set ζ=ϑ in the operators (Equation1.11), and using the following identity (2.8) Iqϑ,0,εf(z)=Iqϑf(z),(2.8) where the Riemann-Liouville fractional q-integral operator, appearing in the right-hand side is due to (Agarwal, Citation1969) defined as: (2.9) Iqϑ{f(z)}=1Γq(ϑ)0z(ztq)μ1f(t)dq(t), (R(μ)>0;|q|<1).(2.9)

Corollary 3.

Let ϑ,ρ,δC, 0<|q|<1; R(ϑ)>0,R(δ+j+1)>0, then the Riemann-Liouville fractional q-integral Iqϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric function rφs(.) is given by (2.10) Iqϑ{zδfn,N(z;q)  rφs[a1,,arb1,,bs;q,ρz]}=zδ+ϑ  j=0[n/N][nNj]qSn,q Γq(δ+j+1)  zjΓq(δ+jζ+1) r+1φs+1[a1,,ar,  qδ+j+1b1,,bs, qδ+j+ϑ+1 ;q, ρz].(2.10)

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Corollary 3, we get the known result presented by Yadav and Purohit (Citation2004), p. 595, EquationEqs. (2.8).

2.2. Right-sided fractional q-integration of the product of q-polynomial and generalized q-hypergeometric series

In this section, we consider Saigo fractional q-integral operators (Equation1.12) involving the product of the GCq-P (Equation1.10) and the generalized q-hypergeometric function (Equation1.9) as the kernels and derive the following theorem:

Theorem 4.

Let ϑ,ζ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(ζ+δj)>0, R(ε+δj)>0 and δj0, then the Saigo fractional q-integral Jqϑ,ζ,ε of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by (2.11) Jqϑ,ζ,ε{zδfn,N(z;q)rφs[a1,,arb1,,bs;q,ρ/z]}=qϑδϑ(ϑ+1)/2  zδζj=0[n/N][nNj]qSn,qΓq(ζ+δj)Γq(ε+δj)Γq(δj)Γq(ϑ+ζ+δj+ε)(zqϑ)j×r+2φs+2[a1,,ar,  qζ+δj,  qε+δjb1,,bs,  qδj,  qϑ+ζ+δj+ε; q, ρqϑ/z].(2.11)

Proof.

Let I2 be the left-hand side of (Equation2.11), using EquationEqs. (1.9, Equation1.10), By interchanging the order of fractional q-integral and summation, we have I2=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)m(b1,b2,,bs;q)mρm[(1)mqm(m1)/2]1+srJqϑ,ζ,ε{xjδm(q;q)m},

 By using (Equation1.16), it becomes I2=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)mρm(b1,b2,,bs;q)m  [(1)mqm(m1)/2]1+sr  ×Γq(ζ+δj+m)Γq(ε+δj+m)Γq(δj+m)Γq(ϑ+ζ+δj+m+ε)  z(jδm)ζqϑ(jδm)ϑ(ϑ+1)/2=j=0[n/N][nNj]qSn,qΓq(ζ+δj)Γq(ε+δj)Γq(δj)Γq(ϑ+ζ+δj+ε)m=0(a1,a2,,ar;q)mρm(b1,b2,,bs;q)m× [(1)mqm(m1)/2]1+sr(qζ+δj;q)m(qε+δj;q)m(qδj;q)m(qϑ+ζ+δj+ε;q)m(ρ/z)mzδ+jζqϑ(δ+jm)ϑ(ϑ+1)/2,

Interpreting the right-hand side of the above equation, in view of EquationEq. (1.9), we arrive at the result (Equation2.11). □

We cannot directly put δj=0 in (Equation2.11) as in the case Γq(δj) comes in the fractional part of the right hand side of the equation. However, if we consider the limit of (Equation2.11) as δj0, we arrive at the outcome that follows, which we obtain here independently for the sake of derivation.

Theorem 5.

Let ϑ,ζ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(ζj+1)>0, R(εj+1)>0, then the Saigo fractional q-integral Jqϑ,ζ,ε of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by (2.12) Jqϑ,ζ,ε{fn,N(z;q)  rφs[a1,,arb1,,bs;q,ρ/z]}=qϑ(ϑ+1)/2(1)1+srρzζ1× j=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)(1a1)(1a2)   (1ar)Γq(1j)Γq(ϑ+ζj+ε+1)(1b1)(1b2)  (1bs) (z qϑ)j(1q)× r+2φs+2[a1q,,arq,  qζj+1,  qεj+1b1q,,bsq,  qj+1,  qϑ+ζj+ε+1   ;q,  ρq1+ϑ+sr/z].(2.12)

Proof.

By using (Equation1.9) and (Equation1.10), the left-hand side of (Equation2.12), say I3, which can be written as: (2.13) I3=Jqϑ,ζ,ε{j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)m(b1,b2,,bs;q)m[(1)mqm(m1)/2]1+srρnzjm(q;q)m},(2.13)

By interchanging the order of fractional q-integral and summation, we have (2.14) I3=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)m(b1,b2,,bs;q)mρm[(1)mqm(m1)/2]1+srJqϑ,ζ,ε{zjm},(2.14) which by using the image formula (Equation1.16), arrive at (2.15) I3=j=0[n/N][nNj]qSn,qm=0(a1,a2,,ar;q)mρm(b1,b2,,bs;q)m  [(1)mqm(m1)/2]1+sr  ×Γq(ζj+m)Γq(εj+m)Γq(j+m)Γq(ϑ+ζj+m+ε)  z(jm)ζqϑ(jm)ϑ(ϑ+1)/2,(2.15)

Rearranging the parameters, we arrive at I3=j=0[n/N][nNj]qSn,qΓq(ζj)Γq(εj)Γq(j)Γq(ϑ+ζj+ε)  m=0(a1;q)m(a2;q)m (ar;q)m(b1;q)m(b2;q)m  (bs;q)m  ×[(1)mqm(m1)/2]1+sr(qζj;q)m(qεj;q)m(qj;q)m(qϑ+ζj+ε;q)m  (ρ/z)mzjζqϑ(jm)ϑ(ϑ+1)/2.

Changing the summation index to run between 0 and , and then utilizing the outcome (2.16) (a1;q)m=(1a1)(a1q;q)m1(a1;q)m+1=(1a1)(a1q;q)m.(2.16)

Additionally, after some reductions in complexity, we obtain (2.17) I3=qϑ(ϑ+1)/2(1)1+s+rρzζ1j=0[n/N][nNj]qSn,q×Γq(ζj+1)Γq(εj+1)(1a1)(1a2)   (1ar)Γq(1j)Γq(ϑ+ζj+ε+1)(1b1)(1b2)  (1bs) 1(1q)(zqϑ)j×m=0(a1q;q)m(a2q;q)m (arq;q)m(b1q;q)m(b2q;q)m  (bsq;q)m[(1)mqm(m1)/2]1+sr×(qζj+1;q)m(qεj+1;q)m(q1j;q)m(qϑ+ζj+ε+1;q)m(ρ/z)mqm(ϑ+1+sr),(2.17)

Interpreting the right-hand side of (Equation2.17), in view of EquationEq. (1.9), we obtain the desired result (Equation2.12). □

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Theorems 2 and 3, we arrive at the known result given by Garg and Chanchlani (Citation2011), p. 147, EquationEqs. (3.2, Equation3.3)).

If we set ζ = 0 in the operators (Equation1.12), and using the following identity (2.18) Jqϑ,0,εf(z)=qϑ(ϑ+1)/2Kqε,ϑf(z),(2.18) where the generalized Weyl fractional q-integral operator, appearing in the right-hand side is due to (Al-Salam, Citation1966) is defined as (2.19) Kqε,ϑf(z)=qεzεΓq(ϑ)z(tz)ϑ1tεϑf(tq1ϑ)dq(t),(2.19) where R(ϑ)>0, ε is arbitrary.

Corollary 6.

Let ϑ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(ε+δj)>0, and δj0, then the generalized Weyl type fractional q-integral Kqε,ϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by (2.20) Kqε,ϑ{zδfn,N(z;q)rφs[a1,,arb1,,bs;q,ρ/z]}=qϑδ zδj=0[n/N][nNj]qSn,q  ×Γq(ε+δj)Γq(ϑ+δj+ε)(zqϑ)jr+1φs+1  [a1,,ar,    qε+δjb1,,bs,    qϑ+δj+ε; q, ρqϑ/z].(2.20)

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Corollary 6, we arrive at the known result given by Yadav et al. (Citation2008).

Corollary 7.

Let ϑ,ε,ρ,δC, 0<|q|<1; R(ϑ)>0,R(εj+1)>0, then the generalized Weyl type fractional q-integral Kqε,ϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by (2.21) Kqε,ϑ{fn,N(z;q)  rφs[a1,,arb1,,bs;q,ρ/z]}=(1)1+srρz1×j=0[n/N][nNj]qSn,qΓq(εj+1)(1a1)(1a2)   (1ar)Γq(ϑj+ε+1)(1b1)(1b2)  (1bs) (z qϑ)j(1q)×r+1φs+1[a1q,,arq,   qεj+1b1q,,bsq,    qϑj+ε+1; q, ρq1+ϑ+sr/z].(2.21)

If we set ζ=ϑ in the operators (Equation1.12), using the following identity: (2.22) Jqϑ,ϑ,εf(z)=Kqϑf(z),(2.22) where the Weyl fractional q-integral operator, appearing in the right-hand side is due to (Al-Salam, Citation1966) is defined as (2.23) Kqϑf(z)=qϑ(ϑ1)/2Γq(ϑ)z(tz)ϑ1f(t q1ϑ)dq(t), R(ϑ)>0.(2.23)

Corollary 8.

Let ϑ,ρ,δC, 0<|q|<1; R(ϑ)>0,R(δϑj)>0, and δj0, then the Weyl type fractional q-integral Kqϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by Kqϑ{zδfn,N(z;q)rφs[a1,,arb1,,bs;q,ρ/z]}=qϑδϑ(ϑ+1)/2  zϑδj=0[n/N][nNj]qSn,q (2.24) ×Γq(δϑj)Γq(δj)(zqϑ)jr+1φs+1[a1,,ar,  qδϑjb1,,bs,   qδj; q, ρqϑ/z].(2.24)

Remark.

If we take n = 0, j=0, then f0,N(z;q)1 in the Corollary 8, we arrive at the known result given by Yadav and Purohit (Citation2006), P. 239, EquationEqs (24).

Corollary 9.

Let ϑ,ρ,δC, 0<|q|<1; R(ϑ)>0,R(ϑj+1)>0, , then the Weyl type fractional q-integral Kqϑ of the product of GCq-P fn,N(.) and generalized q-hypergeometric series rφs(.) is given by (2.25) Kqϑ{fn,N(z;q)  rφs[a1,,arb1,,bs;q,ρ/z]}=qϑ(ϑ+1)/2(1)1+srρzϑ1× j=0[n/N][nNj]qSn,qΓq(ϑj+1)(1a1)(1a2)   (1ar)Γq(1j)(1b1)(1b2)  (1bs) (z qϑ)j(1q)×r+1φs+1[a1q,,arq,  qϑj+1b1q,,bsq,  qj+1; q, ρq1+ϑ+sr/z].(2.25)

3. Application of the main results

In the previous section, we deduced the Saigo fractional q-integral formulae associated with a GCq-P and generalized q-hypergeometric series. Here, we can find some applications given the Saigo fractional q-integral operators of all such classical orthogonal q-polynomials which are special cases of the q-polynomial system.

(i) By setting (3.1) N=1, ω1, Sn,q=Γq(ωn+μ+1)(1)jqj(j1)(q;q)nΓq(ωj+μ+1),(3.1) and replace z by zω in EquationEq. (1.10), we obtain q-Konhouser biorthogonal polynomial Znμ(x;q,ω) define by Yadav and Singh (Citation2004) p. 185, EquationEq. (2.1) as (3.2) Znμ(z;q,ω)=Γq(ωn+μ+1)(q;q)nj=0n[nj]q(1)jqj(j1)Γq(ωj+μ+1)zωj,(3.2) where R(μ)>1 and ω is a positive integer. In view of EquationEq. (3.2), we obtain the succeeding applications of Theorems 1, 4, and 5 in the form of corollaries as below:

Corollary 10.

Assume that the conditions of Theorem 1 are satisfied, then the following formula holds true: Iqϑ,ζ,ε{zδZnμ(x;q,ω)  rφs[a1,,arb1,,bs;q,ρz]} (3.3) =Γq(ωn+μ+1)(q;q)n×j=0[nj]q(1)jqj(j1)Γq(δ+ωj+1)Γq(δ+ωj+1ζ+ε)  zδζ+ωjΓq(ωj+μ+1) Γq(δ+ωj+1ζ)Γq(δ+ωj+1+ε+ϑ)×r+2φs+2[a1,,ar,  qδ+ωj+1, qδ+ωjζ+ε+1b1,,bs, qδ+ωjζ+1, qδ+ωj+ϑ+ε+1; q, ρz],(3.3) provided R(δ+ωj+1)>0, R(δ+ωjζ+ε+1)>0.

Corollary 11.

Assume that the conditions of Theorem 4 are satisfied, the subsequent formula is valid: (3.4) Jqϑ,ζ,ε{zδZnμ(x;q,ω) rφs[a1,,arb1,,bs;q,ρ/z]}=qϑδϑ(ϑ+1)/2Γq(ωn+μ+1)(q;q)nj=0[nj]q(1)jqj(j1)×zδζΓq(ζ+δωj)Γq(ε+δωj)Γq(ωj+μ+1) Γq(δωj)Γq(ϑ+ζ+δωj+ε)(zqϑ)ωj×r+2φs+2[a1,,ar,  qζ+δωj,   qε+δωjb1,,bs,   qδωj,   qϑ+ζ+δωj+ε; q, ρqϑ/z],(3.4) provided R(ζ+δωj)>0, R(ε+δωj)>0.

Corollary 12.

Assume that the conditions of Theorem 5 are met, the resulting formula is correct: (3.5) Jqϑ,ζ,ε{Znμ(x;q,ω)  rφs[a1,,arb1,,bs;q,ρ/z]}=Γq(ωn+μ+1)(q;q)nqϑ(ϑ+1)/2(1)1+srρzζ1j=0[nj]q(1)jqj(j1)Γq(ωj+μ+1)×Γq(ζωj+1)Γq(εωj+1)(1a1)(1a2)   (1ar)Γq(1ωj)Γq(ϑ+ζωj+ε+1)(1b1)(1b2)  (1bs) (z qϑ)ωj(1q)×r+2φs+2[a1q,,arq,  qζωj+1,  qεωj+1b1q,,bsq,  qωj+1,  qϑ+ζωj+ε+1; q, ρq1+ϑ+sr/z],(3.5) provided R(ζωj+1)>0, R(εωj+1)>0.

(ii) Moreover, by putting (3.6) N=ρ=1,Sn,q=Γq(n+τ+1)(1q)nΓq(τ+ς+n+1+j)(1)jq(j(j+1)/2)nj(q;q)nΓq(τ+ς+n+1)Γq(τ+1+j)(3.6) in EquationEq. (1.10), then we obtain q-Jacobi polynomials defined as (3.7) Pn(τ,α)(z;q)=(qτ+1;q)n(q;q)n2φ1(qn;qτ+α+n+1;qτ+1;q,qz).(3.7)

In the view of EquationEq. (3.7), we obtain the succeeding applications of Theorems 1, 4, and 5 in the form of corollaries as below:

Corollary 13.

Assume that the conditions of Theorem 1 are fulfilled, the subsequent formula is true: (3.8) Iqϑ,ζ,ε{zδ pn(τ,α)(z;q)  rφs[a1,,arb1,,bs;q,ρz]}=zδζ(qτ+1;q)n(q;q)n×l=0n(qn;q)l(q;q)l(qτ+α+n+1;q)l(qτ+1;q)l(qz)lΓq(δ+l+1)Γq(δ+lζ+ε+1)Γq(δ+lζ+1)Γq(δ+l+ϑ+ε+1)× r+2φs+2[a1,,ar,  qδ+l+1,  qδ+lζ+ε+1b1,,bs,  qδ+lζ+1,  qδ+l+ϑ+ε+1; q, ρz],(3.8) provided R(δ+l+1)>0,R(δ+lζ+ε+1)>0.

Corollary 14.

Assume that the conditions of Theorem 4 are observed, the preceding formula is correct: (3.9) Jqϑ,ζ,ε{zδpn(τ,α)(z;q)  rφs[a1,,arb1,,bs;q,ρ/z]}=qϑδϑ(ϑ+1)/2(qτ+1;q)n(q;q)n×l=0n(qn;q)l(q;q)l(qτ+α+n+1;q)l(qτ+1;q)lzδζΓq(ζ+δl)Γq(ε+δl) Γq(δl)Γq(ϑ+ζ+δl+ε)(zqqϑ)l×r+2φs+2[a1,,ar,  qζ+δl,   qε+δlb1,,bs,   qδl, qϑ+ζ+δl+ε; q, ρqϑ/z],(3.9) provided R(ζ+δl)>0, R(ε+δl)>0.

Corollary 15.

Assume that the conditions of Theorem 5 are met, the resulting formula is correct: (3.10) Jqϑ,ζ,ε{pn(τ,α)(z;q)  rφs[a1,,arb1,,bs;q,ρ/z]}=qϑ(ϑ+1)/2(qτ+1;q)n(q;q)nl=0n(qn;q)l(q;q)l(qτ+α+n+1;q)l(qτ+1;q)l(1)1+srρzζ1 × Γq(ζl+1)Γq(εl+1)(1a1)(1a2)   (1ar)Γq(1l)Γq(ϑ+ζl+ε+1)(1b1)(1b2)  (1bs) (zq qϑ)l(1q)×r+2φs+2[a1q,,arq,  qζl+1,  qεl+1b1q,,bsq,  ql+1,  qϑ+ζl+ε+1; q, ρq1+ϑ+sr/z],(3.10) provided R(ζl+1)>0, R(εl+1)>0.

4. Special cases

Here, we take further interesting special cases of Theorems.

(i) For 0<|q|<1, q-analogues of exponential function defined in Gasper and Rahman (Citation1990) is given by (4.1) eqz=1ϕ0(0; q,  z)=n=0zn(q;q)n=,1(z;q),|z|<1.(4.1)

If we put r=1, s=0, δ=0, ρ=1, a1=0 in Theorems 1 and 5, the function rϕs  reduces to eqz defined in (Equation4.1), we obtain the following results (4.2) Iqϑ,ζ,ε{eqzfn,N(z;q)}=zζj=0[n/N][nNj]qSn,q×Γq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)zj 3φ2[0,  qj+1,qjζ+ε+1qjζ+1,qj+ϑ+ε+1;q,z],(4.2) provided R(j+1)>0, R(jζ+ε+1)>0,|z|<1, and (4.3) Jqϑ,ζ,ε{fn,N(z;q)eq1/z}=qϑ(ϑ1)/2zζ1j=0[n/N][nNj]qSn,q×Γq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1)(zqϑ)j(1q)  3φ2[0,   qζj+1,   qεj+1qj+1,   qϑ+ζj+ε+1; q, qϑ/z].(4.3) provided R(ζj+1)>0, R(εj+1)>0 and |z|>|qϑ|.

(ii) For 0<|q|<1, q-analogues of exponential functions (Gasper and Rahman, Citation1990), is given by (4.4) Eqz=0ϕ0(  ;q,  z)=n=0qn(n1)/2zn(q;q)n=(z;q).(4.4)

If we take r=s=0, δ=0, ρ=1 in Theorem 1 and 5, the function rϕs  reduces to Eqz defined by (Equation4.4), we obtain the following results (4.5) Iqϑ,ζ,ε{Eqzfn,N(z;q)}=zζj=0[n/N][nNj]qSn,q zj×Γq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)  2φ2[qj+1,qjζ+ε+1qjζ+1,qj+ϑ+ε+1;q,z],(4.5) provided R(j+1)>0,  R(jζ+ε+1)>0,and (4.6) Jqϑ,ζ,ε{Eq1/zfn,N(z;q)}=qϑ(ϑ1)/2zζ1j=0[n/N][nNj]qSn,q(zqϑ)j(1q)×Γq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1)  2φ2[qζj+1,qεj+1qj+1,qϑ+ζj+ε+1   ;q   ,q1+ϑ/z],(4.6) provided R(ζj+1)>0, R(εj+1)>0.

(iii) The q-binomial theorem (Gasper and Rahman, Citation1990) is given by (4.7) 1φ0[ϑ  ;q,   z]=(ϑz;q)(z;q) , |z|<1, 0<|q|<1.(4.7)

From (Equation1.3) and (Equation4.7), it follows that (4.8) (za)qϑ=zϑ1φ0(qϑ;  q,     (a/z)qϑ).(4.8)

If we take r=1,  s=0, a1=qv,vC in Theorems 1 and 4 using (Equation4.8), we get (4.9) Iqϑ,ζ,ε{zδfn,N(z;q)(1ρzqv)qv}=zδζj=0[n/N][nNj]qSn,q× Γq(δ+j+1)Γq(δ+jζ+ε+1)Γq(δ+jζ+1)Γq(δ+j+ϑ+ε+1)zj 3φ2[qv,qδ+j+1,qδ+jζ+ε+1qδ+jζ+1,qδ+j+ϑ+ε+1;q,ρz],(4.9) provided R(δ+j+1)>0, R(δ+jζ+ε+1)>0 and |ρz|<1,and (4.10) Jqϑ,ζ,ε{zδfn,N(z;q)(1ρqv/z)qv}=qϑδϑ(ϑ+1)/2zδζ j=0[n/N][nNj]q×Sn,q(zqϑ)jΓq(ζ+δj)Γq(ε+δj)Γq(δj)Γq(ϑ+ζ+δj+ε) 3φ2[qv,qζ+δj,qε+δjqδj,qϑ+ζ+δj+ε;q,ρqϑ/z],(4.10) provided R(ζ+δj)>0 and R(ε+δj)>0, |z|>|ρqϑ|.

(iv) The little q-Jacobi polynomial is defined in Koekoek et al. (Citation2010) as (4.11) pn(z;a,b;q)=2φ1(qn,abqn+1aq  ;q,  qz).(4.11)

If we take r=2,  s=1, δ=0, ρ=q, a1=qn, a2=abqn+1  and   b1=aq in Theorems 1, 5, the function rϕs  reduces to Little q-Jacobi polynomials defined by (Equation4.11), we obtain the following results (4.12) Iqϑ,ζ,ε{fn,N(z;q)pn(z;a,b;q)}=zζj=0[n/N][nNj]qSn,qzj×Γq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)  4φ3[qn,   abqn+1,   qj+1,   qjζ+ε+1aq,   qjζ+1,   qj+ϑ+ε+1;q,  qz],(4.12) provided R(j+1)>0, R(jζ+ε+1)>0,|qz|<1,and Jqϑ,ζ,ε{fn,N(z;q)pn(1/z;a,b;q)}=q1ϑ(ϑ1)/2zζ1 (4.13) × j=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1)(1qn)(1abqn+1)(1aq)(zqϑ)j(1q)×4φ3[qn+1,abqn+2,qζj+1,qεj+1aq2,qj+1,qϑ+ζj+ε+1;q,q1+ϑ/z],(4.13) provided R(ζj+1)>0, R(εj+1)>0 and |z|<|q1+ϑ|.

(v) The little q-Legendre polynomials in Koekoek et al. (Citation2010). (4.14) pn(z;q)=2φ1(qn,   qn+1q; q,   qz).(4.14)

If we take r=2,  s=1, δ=0,  a1=qn, a2=qn+1  and   b1=q, p=q in Theorems 1 and 5 and use (Equation4.14) to get the following results (4.15) Iqϑ,ζ,ε{fn,N(z;q)pn(z;q)}=zζj=0[n/N][nNj]qSn,qzj×Γq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)  4φ3[qn,aqn+1,qj+1,qjζ+ε+1,qjζ+1,qj+ϑ+ε+1;q,qz],(4.15) provided R(j+1)>0, R(jζ+ε+1)>0, |qz|<1,and (4.16) Jqϑ,ζ,ε{fn,N(x;q)pn(1/z;q)}=q1ϑ(ϑ1)/2zζ1 ×  j=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1)(1qn)(1qn+1)(1q)(zqϑ)j(1q)   ×4φ3[qn+1,qn+2,qζj+1,qεj+1q2,qj+1,qϑ+ζj+ε+1;q,q1+ϑ/z],(4.16) provided R(ζj+1)>0, R(εj+1)>0 and |z|<|q1+ϑ|.

(vi) From Koekoek et al. (Citation2010), the little q-Laguerre polynomials (4.17) pn(z;a,q)=2φ1(qn,0aq; q,  qz).(4.17)

If we take r=2,  s=1, δ=0, ρ=q, a1=qn, a2=0  and   b1=aq in Theorems 1 and 5 and use (Equation4.17) to get the following results (4.18) Iqϑ,ζ,ε{fn,N(z;q)pn(z;a;q)}=zζj=0[n/N][nNj]qSn,q zj×Γq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1) 4φ3[qn,0,qj+1,qjζ+ε+1aq,qjζ+1,qj+ϑ+ε+1;q,qz],(4.18) provided R(j+1)>0, R(jζ+ε+1)>0, |qz|<1,and (4.19) Jqϑ,ζ,ε{fn,N(z;q)pn(1/z;a;q)}=q1ϑ(ϑ+1)/2zζ1× j=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1)(1qn)(1aq)(zqϑ)j(1q)×4φ3[qn+1,0,qζj+1,qεj+1aq2,qj+1,qϑ+ζj+ε+1;q,q1+ϑ/z],(4.19) provided R(ζj+1)>0, R(εj+1)>0 and |z|<|q1+ϑ|.

(vii) The q-Laguerre polynomial is defined in Koekoek et al. (Citation2010) as (4.20) Ln(a)(z;q)=(qϑ+1;q)n(q;q)n1φ1(qnqϑ+1;q,qn+ϑ+1z).(4.20)

If we take r=1,  s=1, δ=0, a1=qn, b1=qϑ+1 and ρ=qn+a+1 in Theorems 1 and 5 and use (Equation4.20) to get the following results (4.21) Iqϑ,ζ,ε{fn,N(z;q)Ln(a)(z;q)}=zζj=0[n/N][nNj]qSn,qΓq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)zj× (q;q)n(qa+1;q)n3φ3[qn,qj+1,qjζ+ε+1qa+1,qjζ+1,qj+ϑ+ε+1;q,qn+ϑ+1z],(4.21) provided R(j+1)>0, R(jζ+ε+1)>0, and (4.22) Jqϑ,ζ,ε{fn,N(z;q)Ln(a)(1/z;q)}=qϑ(ϑ+1)/2+n+a+1zζ1×(q;q)n(qa+1;q)nj=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1) (1qn)(1q)(zqϑ)j(1q)×3φ3[qn+1,qζj+1,qεj+1qϑ+2,qj+1,qϑ+ζj+ε+1;q,qn+2ϑ+2/z],(4.22) provided R(ζj+1)>0, R(εj+1)>0.

(viii) The Stieltjes-Wigert polynomial is defined in Koekoek et al. (Citation2010) as (4.23) Sn(z;q)=1(q;q)n1φ1(qn0;q,qn+1z).(4.23)

If we take r=1, s=1, δ=0, a1=qn, b1=0 and ρ=qn+1 in Theorems 1 and 5 and use (Equation4.23) to get the following results Iqϑ,ζ,ε{fn,N(z;q)Sn(z;q)}=zζj=0[n/N][nNj]q (4.24) Sn,qΓq(j+1)Γq(jζ+ε+1)Γq(jζ+1)Γq(j+ϑ+ε+1)zj× 3φ3[qn,q0+j+1,q0+jζ+ε+10,q0+jζ+1,q0+j+ϑ+ε+1;q,qn+ϑ+1z],(4.24) provided R(j+1)>0, R(jζ+ε+1)>0, and (4.25) Jqϑ,ζ,ε{fn,N(z;q)Sn(1/z;q)}=qϑ(ϑ+1)/2+n+1zζ1×j=0[n/N][nNj]qSn,qΓq(ζj+1)Γq(εj+1)Γq(1j)Γq(ϑ+ζj+ε+1) (1qn)(1q)(zqϑ)j(1q)×3φ3[qn+1,qζj+1,qεj+10,qj+1,qϑ+ζj+ε+1;q,qn+ϑ+2/z],(4.25) provided R(ζj+1)>0, R(εj+1)>0.

Although several similar results can be obtained from our theorem, we omit further details.

5. Discussion and conclusions

With relation to the Saigo fractional q-integral operators provided by Garg and Chanchalani, theorems and corollaries are developed in this paper. With the use of image power function formulae, all theorems have been developed along the well-organized path of the product of a GCq-P and q-hypergeometric series. After some appropriate parametric replacement, the results presented in this paper are easily convertible. Additionally, as special cases, the findings of this study also apply to generalized Weyl, Kober, and Riemann-Liouville fractional q-calculus operators. Additionally, our results can be reduced to Jacobi, Legendre, Hermite, Bessel, Gould-Hopper polynomial and their various special cases by appropriately specializing a variety of parameters of the GCq-P. As a result, the conclusions drawn in this article would immediately lead to a vast array of conclusions involving a wide variety of special functions present in problems in science, engineering, mathematical physics, etc.

Disclosure statement

There is no conflict of interest regarding the publication of this article.

Data availability statement

No data were used to support this study.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

References

  • Agarwal, R. P. (1969). Certain fractional q-integrals and q-derivatives. Mathematical Proceedings of the Cambridge Philosophical Society, 66(2), 365–370. doi:10.1017/S0305004100045060
  • Al-Omari, S., Suthar, D. L., & Araci, S. (2021). A fractional q-integral operator associated with a certain class of q-Bessel functions and q-generating series. Advances in Difference Equations, 2021(1), 1–13. doi:10.1186/s13662-021-03594-4
  • Al-Salam, W. A. (1966). Some fractional q-integrals and q-derivatives. Proceedings of the Edinburgh Mathematical Society, 15(2), 135–140. doi:10.1017/S0013091500011469
  • Annaby, M. H., & Mansour, Z. S. (2012). q-Fractional Calculus and Equations. Lecture Notes in Mathematics, vol. 2056. Berlin: Springer.
  • Cao, J., Huang, J. Y., & Arjika, S. (2023). Generalizations of fractional q-integrals involving Cauchy polynomials and some applications. Journal of Nonlinear Functional Analysis, 1–11. Article ID:12. doi:10.23952/jnfa.2023.12
  • Garg, M., & Chanchlani, L. (2011). q-analogues of Saigo’s fractional calculus operators. Bulletin of Mathematical Analysis and Applications, 3(4), 169–179.
  • Gasper, G., & Rahman, M. (1990). Basic hypergeometric series. Cambridge: Cambridge University Press.
  • He, J. H. (2014). A tutorial review on fractal spacetime and fractional calculus. International Journal of Theoretical Physics, 53(11), 3698–3718. doi:10.1007/s10773-014-2123-8
  • He, J. H. (2018). Fractal calculus and its geometrical explanation. Results in Physics, 10, 272–276. doi:10.1016/j.rinp.2018.06.011
  • He, J. H., Kou, S. J., He, C. H., Zhang, Z. W., & Gepreel, K. A. (2021). Fractal oscillation and its frequency-amplitude property. Fractals, 29(04), 2150105. doi:10.1142/S0218348X2150105X
  • Kac, V., & Cheung, P. (2002). Quantum calculus. New York: Springer.
  • Koekoek, R., Lesky, P. A., & Swarttouw, R. F. (2010). Hypergeometric orthogonal polynomials and their q-analogues. Berlin: Springer Monographs in Mathematics, Springer-Verlag.
  • Kumar, D., Ayant, F., Nisar, K. S., & Suthar, D. L. (2023). On Fractional q-Integral Operators Involving the Basic Analogue of Multivariable Aleph-Function. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93(2), 211–218. doi:10.1007/s40010-022-00796-7
  • Kumar, D., Ayant, F., Ucar, F., & Purohit, S. D. (2022). Certain fractional q-integral formulas for the basic I-function of two variables. Mathematics in Engineering, Science and Aerospace, 13(2), 315–321.
  • Purohit, S. D., & Yadav, R. K. (2010). On generalized fractional q-integral operators Involving the q-Gauss hypergeometric function. Bulletin of Mathematical Analysis and Applications, 2(4), 35–44.
  • Purohit, S. D., Gour, M. M., Joshi, S., & Suthar, D. L. (2021). Certain classes of analytic functions bound with Kober operators in q-calculus. Journal of Mathematics. 2021, 1–8. doi:10.1155/2021/3161275
  • Purohit, S. D., Gour, M. M., Joshi, S., & Suthar, D. L. (2021). On some classes of analytic functions connected with Kober integral operator in fractional q-calculus. Mathematics in Engineering, Science and Aerospace, 2021(3), 1–8. doi:10.1155/2021/3161275
  • Purohit, S. D., Murugusundaramoorthy, G., Kaliappan, V., Suthar, D. L., & Jangid, K. (2023). A unified class of spiral-like functions including Kober fractional operators in quantum calculus. Palestine Journal of Mathematics, 12(2), 487–498.
  • Rajković, P. M., Marinkovrć, S. D., & Stanković, M. S. (2007). Fractional integrals and derivatives in q-calculus. Applicable Analysis and Discrete Mathematics, 1(1), 311–323.
  • Srivastava, H. M., & Agarwal, A. K. (1989). Generating functions for a class of q-polynomials. Annali di Matematica Pura ed Applicata, 154(1), 99–109. doi:10.1007/BF01790345
  • Tian, D., He, C. H., & He, J. H. (2021). Fractal pull-in stability theory for microelectromechanical systems. Frontiers in Physics, 9, 606011. doi:10.3389/fphy.2021.606011
  • Vyas, V. K., Al-Jarrah, A. A., & Purohit, S. D. (2019). q-Sumudu transforms of product of generalized basic hypergeometric functions and their applications. Applications and Applied Mathematics. 14(2), 1099–1111.
  • Vyas, V. K., Al-Jarrah, A. A., Purohit, S. D., Araci, S., & Nisar, K. S. (2020). q-Laplace transform for product of general class of q-polynomials and q-analogue of I-function. Journal of Inequalities and Special Functions, 11(3), 21–28.
  • Vyas, V. K., Al-Jarrah, A. A., Suthar, D. L., & Abeye, N. (2021). Fractional q-integral operators for the product of a q-polynomial and q-analogue of the q-functions and their applications. Mathematical Problems in Engineering, 2021, 1–9. doi:10.1155/2021/7858331
  • Wang, K. L. (2022). Exact solitary wave solution for fractal shallow water wave model by He’s variational method. Modern Physics Letters B, 36(07), 2150602. doi:10.1142/S0217984921506028
  • Wu, X. E., & Liang, Y. S. (2017). Relationship between fractal dimensions and fractional calculus. Nonlinear Science Letters A, 8, 77–89.
  • Yadav, R. K., & Purohit, S. D. (2004). Applications of Riemann-Liouville fractional q-integral operator to basic hypergeometric functions. Acta Ciencia Indica, 30(3), 593–600.
  • Yadav, R. K., & Purohit, S. D. (2006). On applications of Kober fractional q-integral operator to certain basic hypergeometric functions. Journal of Rajasthan Academy of Physical Sciences, 5(4), 437–448.
  • Yadav, R. K., & Purohit, S. D. (2006). On applications of Weyl fractional q-integral operator to generalized basic hypergeometric functions. Kyungpook Mathematical Journal, 46(2), 235–245.
  • Yadav, R. K., & Singh, B. (2004). On a set of basic polynomials Znζ(x;k,q) suggested by basic Laguerre polynomials Lnζ(x,q). Mathematics Student, 73(1-4), 183–189.
  • Yadav, R. K., Purohit, S. D., & Kalla, S. L. (2008). On generalized Weyl fractional q-integral operator involving generalized basic hypergeometric functions. Fractional Calculus and Applied Analysis, 11(2), 129–142.
  • Zhou, H., Cao, J., & Arjika, S. (2022). A note on fractional q-integrals. Journal of Fractional Calculus and Applications, 13(1), 82–94.