657
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Regulation of CYP1A1 by heavy metals and consequences for drug metabolism

, & , PhD
Pages 501-521 | Published online: 06 May 2009
 

Abstract

Cytochrome P450 1A1 (CYP1A1) is a hepatic and extrahepatic enzyme that is regulated by the aryl hydrocarbon receptor signaling pathway. With the growing human exposure to heavy metals, emerging evidence suggests that heavy metals exposure alter CYP1A1 enzyme activity. Heavy metals regulate CYP1A1 at different levels of its aryl hydrocarbon receptor signaling pathway in a metal- and species-dependent manner. The importance of CYP1A1 emerges from the fact that it has been always associated with the metabolism of pro-carcinogenic compounds to highly carcinogenic metabolites. However, recently CYP1A1 has gained status along with other cytochrome P450 enzymes in the metabolism of drugs and mediating drug–drug interactions. In addition, CYP1A1 has become a therapeutic tool for the bioactivation of prodrugs, particularly cytotoxic agents. In this review, we shed light on the effect of seven heavy metals, namely arsenic, mercury, lead, cadmium, chromium, copper and vanadium, on CYP1A1 and the consequences on drug metabolism.

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN 250139-07 to Ayman OS. Anwar Anwar-Mohamed is the recipient of Mike Wolowyk Graduate Scholarship award.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.