Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 27, 2015 - Issue 11
287
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Comparative cardiopulmonary toxicity of exhausts from soy-based biofuels and diesel in healthy and hypertensive rats

, , , , , , , , , & show all
Pages 545-556 | Received 15 Mar 2015, Accepted 05 Jun 2015, Published online: 30 Oct 2015
 

Abstract

Increased use of renewable energy sources raise concerns about health effects of new emissions. We analyzed relative cardiopulmonary health effects of exhausts from (1) 100% soy biofuel (B100), (2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and (3) 100% petroleum diesel (B0) in rats. Normotensive Wistar–Kyoto (WKY) and spontaneously hypertensive rats were exposed to these three exhausts at 0, 50, 150 and 500 μg/m3, 4 h/day for 2 days or 4 weeks (5 days/week). In addition, WKY rats were exposed for 1 day and responses were analyzed 0 h, 1 day or 4 days later for time-course assessment. Hematological parameters, in vitro platelet aggregation, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury and inflammation, ex vivo aortic ring constriction, heart and aorta mRNA markers of vasoconstriction, thrombosis and atherogenesis were analyzed. The presence of pigmented macrophages in the lung alveoli was clearly evident with all three exhausts without apparent pathology. Overall, exposure to all three exhausts produced only modest effects in most endpoints analyzed in both strains. BALF γ-glutamyl transferase (GGT) activity was the most consistent marker and was increased in both strains, primarily with B0 (B0 > B100 > B20). This increase was associated with only modest increases in BALF neutrophils. Small and very acute increases occurred in aorta mRNA markers of vasoconstriction and thrombosis with B100 but not B0 in WKY rats. Our comparative evaluations show modest cardiovascular and pulmonary effects at low concentrations of all exhausts: B0 causing more pulmonary injury and B100 more acute vascular effects. BALF GGT activity could serve as a sensitive biomarker of inhaled pollutants.

Acknowledgements

We thank Drs. Gary Hatch, and Mike Madden of the US EPA for their insightful internal review of the manuscript.

Declaration of interest

Supported in part by the US EPA SEE Program via Cooperative Agreement between NCBA and US EPA (RT). The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.

Supplementary material available online

Supplementary Tables S1-S12

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.