168
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Pyrrolidinium-type fullerene derivative-induced apoptosis by the generation of reactive oxygen species in HL-60 cells

, , , , , , & show all
Pages 1240-1247 | Received 16 Jul 2009, Published online: 03 Nov 2009
 

Abstract

The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This paper was first published online on Early Online on 22 September 2009.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.