121
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Human Vdelta1 gamma-delta T cells exert potent specific cytotoxicity against primary multiple myeloma cells

, &
Pages 1110-1118 | Received 21 Oct 2011, Accepted 26 Mar 2012, Published online: 17 Jul 2012
 

Abstract

Background aims. Human gamma-delta (γδ) T cells are potent effector lymphocytes of innate immunity involved in anti-tumor immune surveillance. However, the Vδ1 γδ T-cell subset targeting multiple myeloma (MM) has not previously been investigated. Methods. Vδ1 T cells were purified from peripheral blood mononuclear cells of healthy donors and patients with MM by immunomagnetic sorting and expanded with phytohemagglutinin (PHA) together with interleukin (IL)-2 in the presence of allogeneic feeders. Vδ1 T cells were phenotyped by flow cytometry and used in a 4-h flow cytometric cytotoxicity assay. Cytokine release and blocking studies were performed. Primary myeloma cells were purified from MM patients’ bone marrow aspirates. Results. Vδ1 T cells expanded from healthy donors displayed prominent cytotoxicity by specific lysis against patients’ CD38 + CD138 + bone marrow-derived plasma cells. Vδ1 T cells isolated from MM patients showed equally significant killing of myeloma cells as Vδ1 T cells from normal donors. Vδ1 T cells showed similarly potent cytotoxicity against myeloma cell lines U266 and RPMI8226 and plasma cell leukemia ARH77 in a dose-dependent manner. The interferon (IFN)-γ secretion and Vδ1 T-cell cytotoxicity against myeloma cells was mediated in part through the T-cell receptor (TCR) in addition to involvement of Natural killer-G2D molecule (NKG2D), DNAX accessory molecule-1 (DNAM-1), intracellular cell adhesion molecule (ICAM)-1, CD3 and CD2 receptors. In addition, Vδ1 T cells were shown to exert anti-myeloma activity equal to that of Vδ2 T cells. Conclusions. We have shown for the first time that Vδ1 T cells are highly myeloma-reactive and have therefore established Vδ1 γδ T cells as a potential candidate for a novel tumor immunotherapy.

Acknowledgments

We would like to thank Dr Derralynn Hughes for helpful discussions, Dympna McLeese for technical support, Professor Lawrence Lamb (University of Alabama at Birmingham, USA) for the U251MG cell line and Professor Peter Ambros (Children's Cancer Research Institute, Vienna) for STA-NB5 cells.

This work has been supported by a Leukaemia & Lymphoma Research Grant (AK) and a Royal Free Charity Grant (AK).

Disclosure of interest: The authors have no conflicting financial interests.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.