Publication Cover
Automatika
Journal for Control, Measurement, Electronics, Computing and Communications
Volume 65, 2024 - Issue 3
430
Views
0
CrossRef citations to date
0
Altmetric
Regular Paper

Grey wolf optimized stacked ensemble machine learning based model for enhanced efficiency and reliability of predicting early heart disease

&
Pages 749-762 | Received 26 Dec 2023, Accepted 06 Feb 2024, Published online: 26 Feb 2024

References

  • World Health Organization: WHO. (2018, August 27). Cardiovascular diseases. https://www.who.int/westernpacific/health-topics/cardiovascular-diseases.
  • Kochanek KD, Xu J, Arias E. (2022). Mortality in the United States, 2021. https://doi.org/10.15620/cdc:122516.
  • Dominic V, Gupta D, Khare S. An effective performance analysis of machine learning techniques for cardiovascular disease. Appl Med Inform. 2015;36(1):23–32.
  • Detrano J, Steinbrunn P, Schmid S, et al. Heart Disease. UCI Machine Learning Repository. 1989. Retrieved December 18, 2023, from https://archive.ics.uci.edu/dataset/45/heart+disease.
  • Verma L, Srivastava S, Negi PC. A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data. J Med Sys. 2016;40:1–7. doi:10.1007/s10916-016-0536-z
  • Al-Tashi Q, Rais H, Jadid S. Feature selection method based on grey wolf optimization for coronary artery disease classification. In: Recent trends in data science and soft computing: proceedings of the 3rd international conference of reliable information and communication technology (IRICT 2018). Springer International Publishing; 2019. p. 257–266.
  • El Bakrawy LM. Grey wolf optimization and naive Bayes classifier incorporation for heart disease diagnosis. Aust J Basic Appl Sci. 2017;11(7):64–70.
  • Garavand A, Salehnasab C, Behmanesh A, et al. Efficient model for coronary artery disease diagnosis: a comparative study of several machine learning algorithms. J Healthc Eng. 2022;2022. doi:10.1155/2022/5359540
  • Dissanayake K, Md Johar MG. Comparative study on heart disease prediction using feature selection techniques on classification algorithms. Appl Comput Intell Soft Comput. 2021;2021:1–17.
  • Sabab SA, Munshi MAR, Pritom AI. Cardiovascular disease prognosis using effective classification and feature selection technique. In: 2016 international conference on medical engineering, health informatics and technology (MediTec). IEEE; 2016, December. p. 1–6.
  • Saqlain SM, Sher M, Shah FA, et al. Fisher score and Matthews correlation coefficient-based feature subset selection for heart disease diagnosis using support vector machines. Knowl Inf Syst. 2019;58:139–167. doi:10.1007/s10115-018-1185-y
  • Latha CBC, Jeeva SC. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inform Med Unlocked. 2019;16:100203. doi:10.1016/j.imu.2019.100203
  • Itoo NN, Garg VK. Heart disease prediction using a stacked ensemble of supervised machine learning classifiers. In: 2022 International mobile and embedded technology conference (MECON). IEEE; 2022, March. p. 599–604.
  • Liu J, Dong X, Zhao H, et al. Predictive classifier for cardiovascular disease based on stacking model fusion. Processes. 2022;10(4):749. doi:10.3390/pr10040749
  • Pal GK, Gangwar S. Heart disease prediction by stacking ensemble models on multiple classifiers by applying feature selection methods. J Theor Appl Inf Technol. 2022;100(23.
  • Pa S, Priya SM. A novel approach based on voting ensemble and pca dimensionality reduction method for the prediction of heart disease. J Theor Appl Inf Technol. 2022;100(24.
  • Harika N, Swamy SR, Nilima. Artificial intelligence-based ensemble model for rapid prediction of heart disease. SN Comput Sci. 2021;2(6):431. doi:10.1007/s42979-021-00829-9
  • Karadeniz T, Tokdemir G, Maraş HH. Ensemble methods for heart disease prediction. New Gener Comput. 2021;39(3-4):569–581. doi:10.1007/s00354-021-00124-4
  • Beunza JJ, Puertas E, García-Ovejero E, … Landecho MF. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J Biomed Inform. 2019;97:103257. doi:10.1016/j.jbi.2019.103257
  • Taha K, Ross HJ, Peikari M, et al. An ensemble-based approach to the development of clinical prediction models for future-onset heart failure and coronary artery disease using machine learning. J Am Coll Cardiol. 2020;75(11_Supplement_1):2046–2046. doi:10.1016/S0735-1097(20)32673-5
  • Chiu CC, Wu CM, Chien TN, et al. Applying an improved stacking ensemble model to predict the mortality of ICU patients with heart failure. J Clin Med. 2022;11(21):6460. doi:10.3390/jcm11216460
  • Verma AK, Pal S. Prediction of skin disease with three different feature selection techniques using the stacking ensemble method. Appl Biochem Biotechnol. 2020;191(2):637–656. doi:10.1007/s12010-019-03222-8
  • Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances Eng Softw. 2014;69:46–61. doi:10.1016/j.advengsoft.2013.12.007
  • Emmanuel DADA, Joseph S, Oyewola D, et al. Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons. Gazi Univ J Sci. 2021;35(2):485–504. doi:10.35378/gujs.820885
  • Wang Q, Ma Y, Zhao K, et al. A comprehensive survey of loss functions in machine learning. Ann Data Sci. 2020: 1–26.
  • Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over the F1 score and accuracy in binary classification evaluation. BMC Genom. 2020;21(1):1–13. doi:10.1186/s12864-019-6413-7
  • Jangle P, Narayankar S. Alternating decision trees for early diagnosis of heart disease. Int J Eng Comput Sci. 2016;05(16070):16070–16072. doi:10.18535/ijecs/v5i4.02
  • Al-Tashi Q, Kadir SJA, Rais HM, et al. Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access. 2019;7:39496–39508. doi:10.1109/ACCESS.2019.2906757
  • Kitonyi PM, Segera DR. Hybrid gradient descent grey wolf optimizer for optimal feature selection. BioMed Res Int. 2021;2021. doi:10.1155/2021/2555622
  • Nassif AB, Mahdi O, Nasir Q, et al. Machine learning classifications of coronary artery disease. In: 2018 International joint symposium on artificial intelligence and natural language processing (iSAI-NLP). IEEE; 2018, November. p. 1–6.
  • Fjellström C, Nyström K. Deep learning, stochastic gradient descent and diffusion maps. J Comput Math Data Sci. 2022;4:100054. doi:10.1016/j.jcmds.2022.100054
  • Sun S, Cao Z, Zhu H, et al. A survey of optimization methods from a machine learning perspective. IEEE Trans Cybern. 2019;50(8):3668–3681. doi:10.1109/TCYB.2019.2950779
  • Gong S, Nong Q, Xiao H, et al. Uncertainty in study of social networks: robust optimization and machine learning. Asia-Pac J Oper Res. 2023;40(01):2340006. doi:10.1142/S0217595923400067
  • Yan Y. Enhance robustness of machine learning with improved efficiency. In: Proceedings of the AAAI conference on artificial intelligence. 2023, June. Vol. 37, No. 13, p. 15461–15461.
  • Zhang C, Wang Z, Wang X. Machine learning-based data-driven robust optimization approach under uncertainty. J Process Control. 2022;115:1–11. doi:10.1016/j.jprocont.2022.04.013
  • Hong LJ, Huang Z, Lam H. Learning-based robust optimization: procedures and statistical guarantees. Manag Sci. 2021;67(6):3447–3467. doi:10.1287/mnsc.2020.3640
  • Ben-Tal A, Nemirovski A. Lectures on stochastic programming. Princeton University Press; 2006.
  • Pilanci M, Wainwright MJ. The perils of optimization for robustness to outlier data. IEEE Trans Inf Theory. 2019;67(8):5209–5234.
  • Wang Z, Tu L. Theoretical foundations of robust optimization for machine learning. J Mach Learn Res. 2016;17(1):1–37.
  • Talukdar J, Singh TP. Early prediction of cardiovascular disease using artificial neural network. Paladyn J Behav Robotics. 2023;14(1):20220107. doi:10.1515/pjbr-2022-0107
  • Taylan O, Alkabaa AS, Alqabbaa HS, et al. Early prediction in classification of cardiovascular diseases with machine learning, neuro-fuzzy and statistical methods. Biology (Basel). 2023;12(1):117.
  • Hossain MI, Maruf MH, Khan MAR, et al. Heart disease prediction using distinct artificial intelligence techniques: performance analysis and comparison. Iran J Comput Sci. 2023: 1–21.
  • Jawalkar AP, Swetcha P, Manasvi N, et al. Early prediction of heart disease with data analysis using supervised learning with stochastic gradient boosting. J Eng Appl Sci. 2023;70(1):122. doi:10.1186/s44147-023-00280-y
  • Mohiddin SK, Peteti S, Swathi T, et al. A Modified Grey Wolf Optimizer algorithm for feature selection to predict heart diseases. IJFANS Int J Food Nutr Sci. 2023;2319:1775. doi:10.48047/IJFANS/V11/I12/180